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1. INTRODUCTION

The LHC will be a very complex environment with most of theeirgsting physics signals, and their
backgrounds, consisting of multi-parton (and lepton/phpfinal states. The ATLAS and CMS exper-
iments will measure these final states with negligible stia@l error, even in the early running, and in
many cases with systematic errors smaller than those azhley the experiments at the Tevatron (see
the contribution in these proceedings from G. Dissertdiie luminosity uncertainty and the uncertainty
in the parton distribution functions (PDFs) can be minirdibg the normalization of the physics process
of interest to certain Standard Model (SM) benchmark preegssuch ad/, Z, andtt production. Thus,
itis important to have theoretical predictions at the sameetter precision as the experimental measure-
ments. In many cases, SM backgrounds to non-SM physics caxttagolated from background-rich to
signal-rich regions, but a definite determination of thelkdgaound often requires an accurate knowledge
of the background cross sections. An accurate knowledgeafss section requires its calculation to at
least next-to-leading order (NLO).

There are many tools for constructing basically any comfilexd state at the LHC at leading
order (LO). When interfaced to parton shower Monte Carlggprms, such predictions can provide a
qualitative prediction of both inclusive and exclusive fisetes. There are several different interfaces
between fixed order (both LO and NLO) matrix element and mestmwer Monte Carlo programs, with
a benchmark comparison reported in this workshop.

A realistic theoretical description of complex final statéugh, exists only at NLY with the
current limit of such calculations beirly— 3 and2 — 4 processes (see below). At LO, calculations
often have large scale dependence, a sensitivity to kinemais, and a poor modeling of jet structure.
These deficiencies are most often remedied at NLO. NLO paeia calculations can serve as useful
benchmarks by themselves, as well as providing an even noonglete event description when inter-
faced with parton shower Monte Carlo programs, or when resation effects are included. For the
crucial benchmark processes mentioned ab&ive £ andtt production), it is useful to go beyond NLO
to NNLO. This has been done f&¥ and~Z production, including the calculation of differential rdjpy
distributions, and is expected for, Z/~y+jet andWW +jet production in the near future. Progress towards
tt is reported in the contributions from M. Czakon, A. Mitov aBdMoch.

Even at NLO, the calculation af — 3 (and2 — 4) processes is extremely time- and theorist-
consuming, so clear priority needs to be established fadlpoocesses most needed for the LHC. In the
2005 Les Houches proceedings, such a realistic NLO wishhstestablished (see Table 1). Itis grati-
fying that 3 of the 8 processes (and some which were not lifteegxample the one-loop interference
between gluon fusion and weak boson fusion in Higgs plus gifgduction [1,2] ), have been calculated
in the intervening two years, but daunting to know that 5 rengad a new process has been added.
As noted in the table, three groups have calculdiéd’ +jet since Les Houches 2005 and a detailed
comparison of the results is presented in these Les Houabesgaings. In addition to the new NLO
calculation, several processes beyond NLO also have beksdad the list.

The new processes that have been added are:
e pp — bbbb

There are several interesting physics signatures inwltwo b-pairs in the final state, such as

bb H(— bb) and hidden valley signatures whefebosons may decay to multiplequarks. Re-

lated to this calculation is the production of 4jets, whisHdss interesting experimentally, but a

benchmark calculation from a theoretical point of view.

The calculations beyond NLO added to the 2007 version ofishade:
e gg — W*W* O(a?a?)
This subprocess is important for understanding the backgt®fori — W W),
e NNLO pp — ¢t

'Unless otherwise stated, the terms LO, NLO , NNLO refer toatfter in perturbative QCD only.
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This process is important for the usetéfproduction at the LHC as a precision benchmark.

e NNLO to weak vector boson fusion (VBF) aiffy y+jet
VBF production of a Higgs boson is essential for measurirgctbupling of the Higgs to bosons.
Z /~+jetis an essential experimental process that is used terstahd the jet energy scale. It will
also be useful for PDF determination.

e In addition, to further reduce the theoretical uncertaiiotythe benchmarki’’/Z processes, a
combined NNLO QCD and NLO electroweak (EW) calculation ieded. The cross sections are
known separately to NNLO QCD and to NLO EW, but a combinedudat@mn will improve the
accuracy of the result.

It is also daunting to realize that all of the three finisheltwations from the 2005 list remain
private code. To be truly useful, such calculations neecetavailable in programs accessible to exper-
imenters. Most useful is if the event 4-vectors and evengitedutputs can be stored in ROOT n-tuple
format, so that experimental analysis cuts can be easillfeahim a manner similar to what is used for
the actual data, and so that results do not have to be reajedef the analysis cuts change. In such a
format, it is also easy to store not only the nominal evengleigenerated with the central PDF of a
NLO set, but also the weights for the set of error PDFs as weléuch a manner, the PDF uncertainty
for any event configuration can be easily established, aexipense of a larger n-tuple size. Such a
modification is being carried out for the MCFM program.

The calculation of complex multi-parton final states resiritthe generation of many subtraction
terms for soft and/or collinear real radiation (e.g. Cat@eymour dipole or antenna subtraction terms),
and each of these in turn requires a counter-event to be afedeior the Monte Carlo evaluation of the
matrix element. Thus, for example, in MCFM for +2jets (and for Higgs+2jets as well), there are 24
counter-term events for each real event. The net resulieisgfuirement of a large amount of CPU
time for computing such cross sections, and the need for r@ahpf disk space for storing the results
in ntuples. These requirements will become even more exrtr@srthe complexity of the calculations
increases.

Although most of the NLO calculations for multi-particleggluction so far are private code tai-
lored to the particular process at hand, there is a cleartdéffivards more automatisation and making
results available to the community. Several agreementsib@@n made during the workshop to facilitate
comparisons and to make at least certain building blockeriegt NLO calculations publicly available:

e Les Houches accord on master integrals: the aim is to havwaryi of one-loop integrals, finite
as well as divergent ones, which can be used by anybody usingtizod which requires scalar
master integrals. It has been agreed that the format foratieling of the integrals respectively
their arguments should follow the LoopTools [3, 4] convens, as the infrared finite integrals
are already available in LoopTools. The infrared divergergs recently have been classified and
listed in [5] and can be found in analytic formtatt p: / / qcdl oop. f nal . gov. The final aim
is a webpage containing

1. acollection of scalar one-loop integrals in analytiaior
2. benchmark points and comments which kinematic regions been tested,
3. code to calculate the Laurent series of each integraliatgpspecified by the user,

4. ideally also various codes for the reduction to mastegiratls.

This webpage is in Wiki format, such that contributions caraldded easily. The location of the

webpage is

http://ww. i ppp. dur. ac. uk/ LoopFor ge/ i ndex. php/ Mai n_Page, and input is

eagerly awaited.

e If an amplitude is published in an analytic form, numericles at some benchmark points should

be given to facilitate cross-checks by other groups.

All of the 2005 NLO wishlist processes that have been corepléd date relied on traditional
Feynman diagrams for the loop amplitudes. On the other hasidhe complexity of the final-states
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Process
(Vel{Z,W,v})

Comments

Calculations completed since Les Houches 2

D05

1.pp — VVijet

2. pp — Higgs+2jets

3pp—=VVV

W W et completed by Dittmaier/Kallweit/Uwer,
Campbell/Ellis/Zanderighi

and Binoth/Karg/Kauer/Sanguinetti (in progress)
NLO QCD to thegg channel

completed by Campbell/Ellis/Zanderighi;

NLO QCD+EW to the VBF channel

completed by Ciccolini/Denner/Dittmaier

7 7 7 completed by Lazopoulos/Melnikov/Petriel
andWW Z by Hankele/Zeppenfeld

Calculations remaining from Les Houches 20

DS

4. pp — ttbb

5. pp — tt+2jets
6.pp — VV b,
7.pp — VV+2jets

8. pp — V+3jets

relevant fortt H

relevant fortt H

relevant for VBF— H — V'V, ttH
relevant for VBF— H — V'V
VBF contributions calculated by
(Bozzi/)hager/Oleari/Zeppenfeld
various new physics signatures

NLO calculations added to listin 2007

9. pp — bbbb

Higgs and new physics signatures

Calculations beyond NLO added in 2007

10.gg — W*W* O(a?a?)
11. NNLOpp — tt
12. NNLO to VBF andZ /~y+jet

backgrounds to Higgs
normalization of a benchmark process
Higgs couplings and SM benchmark

Calculations including electroweak effects

13. NNLO QCD+NLO EW forWW/Z

precision calculation of a SM benchmark

Table 1: The updated experimenter’s wishlist for LHC preess
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grows further, it may prove necessary to adopt as well newogmhes and methods. At the 2007 session
of Les Houches, several such approaches were under discassl development, primarily those based
on the general analytic structure of amplitudes. These odstlinclude recursive techniques at both
tree and loop level; the use of (generalized) unitarity iarfdimensions, and id — 2¢ dimensions
(the latter in the context of dimensional regularizatiard automated solutions for coefficients of one-
loop integrals, which is also connected with generalizdathuty. Complex final states possess intricate
kinematic regions in which either the amplitude itself b@es singular, or a particular representation of
it becomes numerically unstable. The general identificaticsuch regions, and methods for dealing with
potential instabilities, are also areas of active intemghich are not unrelated to the use of analyticity to
construct loop amplitudes.

Even with the rapid progress we have been seeing in the lastdars, there are NLO cross sec-
tions of interest that will not be completed in a timely manfa the LHC. One question is whether
we can provide any approximations/estimates of the untzkaiNLO matrix elements based on expe-
riences with simpler calculations. Table 2 shows the Keexx{NLO/LO) tabulated for some important
processes at the Tevatron and LHC. Of course, K-factors amaplified way of presenting the effects
of NLO corrections (depending on both scale choice and P[RE t example), but the table provides
some interesting insights. For example, it appears thatgsses that involve a large color annihilation
(for examplegg — Higgs) tend to have large K-factors for scales typicallysgmoto evaluate the matrix
elements. The addition of extra legs in the final state temdsdult in a smaller K-factor. For example,
the K-factor for Higgs+2jets is smaller than for Higgs+1j@hich in turn is smaller than that for inclu-
sive Higgs production. The same is true for the K-factorifidt2jet being less than that fo# +1jet
and the K-factor fort+1jet being less than that fot. Can we generalize this to estimate that the NLO
corrections folV +3jets and¢+2jets will be smaller still?

Typical scales TevatronK -factor LHC K-factor

Process po | K(po) | K(p1) | K'(po) | K(po) | K(p1) | K' (o)
W mw | 2mw | 1.33 | 1.31 | 1.21 | 1.15 | 1.05 | 1.15
W+1jet my | P’ 142 | 120 | 143 | 121 | 1.32 | 1.42
W+2jets mw | pt 1.16 | 091 | 1.29 | 0.89 | 0.88 | 1.10
WW +et mw | 2mw | 119 | 1.37 | 1.26 | 1.33 | 1.40 | 1.42
tt me | 2my 1.08 | 131 | 1.24 | 140 | 159 | 1.48
ti+1jet me | 2my 113 | 143 | 1.37 | 097 | 1.29 | 1.10
bb my | 2my 1.20 | 1.21 | 210 | 098 | 0.84 | 251
Higgs my | pt 2.33 - 233 | 1.72 - 2.32
Higgs via VBF | my | pi¢' 1.07 | 097 | 1.07 | 1.23 | 1.34 | 1.09
Higgs+1jet my | P’ 2.02 - 213 | 1.47 - 1.90
Higgs+2jets | mpy | p - - - 1.15 - -

Table 2: K-factors for various processes at the Tevatron and the LHiileéed using a selection of input parameters. In all
cases, the CTEQ6M PDF set is used at NKQuses the CTEQ6L1 set at leading order, whilsuses the same set, CTEQ6M,
as at NLO. For most of the processes listed, jets satisfyefjeirrmentpr > 15 GeV/c andjn| < 2.5 (5.0) at the Tevatron
(LHC). For Higgs+1,2jets, a jet cut of 40 GeV/c apd < 4.5 has been applied. A cut @fﬁt > 20 GeV/c has been applied
for the tt+jet process, and a cut pfl‘ft > 50 GeV/c for WW+jet. In theW (Higgs)+2jets process the jets are separated by
AR > 0.52, whilst the VBF calculations are performed for a Higgs bosbmass120 GeV. In each case the value of the
factor is compared at two often-used scale choices, whersddle indicated is used for both renormalization and fexethion
scales.



The dream of experimentalists is for every NLO parton leadtelation to come packaged with a
complete parton shower for the partons produced in the NL@ $@attering process. So far, this exists
for a few not-too-complicated processes, but it is not sg gaarrange this for each given NLO parton
level calculation. To make this process easier, it will befulkto have a very systematic shower with a
simple structure that can be matched to the structure of th@ dalculation. Two programs discussed
at the workshop, and represented by contributions laterignsection, may help. One would naturally
match to a NLO calculation with antenna subtractions. Theotvould naturally match to a NLO
calculation with the widely used Catani-Seymour dipoletsadiions.

For many physics processes, though, we will have to contiouely upon LO parton shower
Monte Carlo programs (interfaced with exact LO matrix elamealculations). In many instances, a
large part of the difference between LO and NLO predictiernhe use of LO PDFs for the former and
NLO PDFs for the latter. Nominally, the choice indicatedaba correct, but LO PDFs can differ from
their NLO counterparts by a significant amount due to the énfbe of DIS data on the global fits. The
LO PDFs often are changed in such a manner as to lead to sagnifieviations of LO predictions with
LO PDFs from NLO predictions with NLO PDFs, in some kinemaégions. One solution that has been
discussed is the use of NLO PDFs with LO Monte Carlos. Thigesothe problem mentioned above,
but can lead to additional problems, for example with préalis for low mass objects at the LHC. The
solution adopted by several groups, and presented at thistwap, is the development efodified LO
PDFs, including the best features (for use in LO Monte Cardéshe LO and NLO PDFs. It will be
useful/important to tabulate the K-factors using theseifrestiLO PDFs.

For the maximal exploitation of physics, there are also ireguents on the experimental side. We
suggest that cross sections at the LHC should be quoted aatlren level, and where possible with
the estimated parton-to-hadron corrections, so that aegrétical prediction (parton or hadron level)
can easily be compared after the fact to the archived dataABp, the experimental data needs to be
guoted only for the range of measurement, rather than ed{atgal to the full cross section; for example,
measurements ¢ — ev should be quoted for the range of electron transverse mameand rapidity
and of missing transverse energy actually used in the tiiggg@nd analysis, rather than performing an
extrapolation to the full¥’ cross sections. Such recommendations were the exceptiofi (IZ+jets)
rather than the rule at the Tevatron and a clear model nedmsget for the LHC.

The structure of this report is as follows. First a review gpezted cross sections and uncertain-
ties at the LHC from an experimental point of view is givenebtbe stage. Then various new approaches
to the calculation of tree-level and one-loop multi-leg &itndes are presented, followed by a section
on “improvements on standard techniques”, with particelaphasis on the analysis of singularities
which can create numerical instabilities when integratimgti-particle one-loop amplitudes. Section
Il contains various results, first a tuned comparison diedént NLO calculations fopp — WV +jet,
then results pointing towards thiecross section at NNLO, and finally NNLO predictions for hatdco
event shapes ia™ e~ annihilation. The latter is not of direct relevance for tHéQ, but is a benchmark
calculation in what concerns the construction of NNLO Md@tglo programs in the presence of a com-
plicated infrared singularity structure. The report isseld by a section on parton showers, addressing
the matching of parton showers with multi-leg LO matrix e1ts as well as the matching with partonic
NLO calculations, which is of primordial interest at presand future TeV colliders.

2. MEASUREMENTS OF HARD PROCESSES AT THE LHC?2
2.1 Introduction

We are approaching the start-up of the world’s most powgddiicle accelerator ever built. Itis expected
that CERN'’s Large Hadron Collider (LHC) will start its op&oan in 2008. Thanks to the unprecedented
energies and luminosities, it will give particle physisiite possibility to explore the TeV energy range

2Contributed by: G. Dissertori



for the first time and hopefully discover new phenomena, Wigic beyond the so successful Standard
Model (SM). Among the most prominent new physics scenaniestae appearance of one (or several)
Higgs bosons, of supersymmetric particles and of signafiordhe existence of extra spatial dimensions.

However, before entering the discovery regime, consideratborts will be invested in the mea-
surements of SM processes. We are sure that these have terbargkthus they can serve as a proof for
a working detector (a necessary requirement before ansn@éidiscovery is made). Indeed, some of
the SM processes are also excellent tools to calibrate pkitie detector. However, such measurements
are also interesting in their own right. We will be able to ltgrage the SM predictions at unprecedented
energy and momentum transfer scales, by measuring crassnseand event features for minimum-bias
events, jet production, W and Z production with their lefitashecays, as well as top quark production.
This will allow to check the validity of the Monte Carlo geaéors, both at the highest energy scales
and at small momentum transfers, such as in models for théoesent underlying event. The parton
distribution functions (pdfs) can be further constrainedheasured for the first time in kinematic ranges
not accessible at HERA. Important tools for pdf studies bdljet+photon production or Drell-Yan pro-
cesses. Finally, SM processes such as W/Z+jets, multifeéttap pair production will be important
backgrounds to a large number of searches for new physidharefore have to be understood in detail.

The very early goals to be pursued by the experiments, orcirit data are on tape, are three-
fold : (a) It will be of utmost importance to commission andilzate the detectors in situ, with physics
processes as outlined below. The trigger performance hias tmderstood in as unbiased a manner as
possible, by analyzing the trigger rates of minimum-biaangy, jet events for various thresholds, single
and di-lepton as well as single and di-photon events. (b)lltbe necessary to measure the main SM
processes and (c) prepare the road for possible discovétrissnstructive to recall the event statistics
collected for different types of processes. For an integtdatminosity ofl fb~! per experiment, we
expectabout0” W — ev events on tape, a factor of ten l&&s- e*e~ and somd 0° tt — p+X events.

If a trigger bandwidth of about 10% is assumed for QCD jet&wiinsverse momentupy > 150 GeV,

bb — 1+ X and minimum-bias events, we will write abaw events to tape, for each of these channels.
Also the existence of supersymmetric particles, for exangiinos withm;z ~ 1 TeV, or a Higgs with
mpu ~ 130 GeV, would result in sizeable event statistit®{ — 10%). This means that the statistical
uncertainties will be negligible after a few days, for mottee physics cases. The analysis results
will be dominated by systematic uncertainties, be it theitkd understanding of the detector response,
theoretical uncertainties or the uncertainty from the huwsity measurements.

Concerning the experimentally achievable precision, wasth noting that the numerous quality
checks during construction and beam tests of series detaottules let us conclude that the detectors as
built should give a good starting-point performance. Femore, cosmic ray muons, beam-gas interac-
tions and beam halo muons are available as commissioningadifidation tools already before the first
real proton-proton collisions. Finally, with such first isibns in hand, the trigger and data acquisition
systems will be timed-in, the data coherence checked, gstieras synchronized and reconstruction al-
gorithms debugged and calibrated. The electromagnetibaaicbnic calorimeters will be calibrated with
first physics events. For example, the initial crystal irgalibration precision of about 4% for the CMS
ECAL will be improved to about 2% by using tikesymmetry of the energy deposition in minimum-bias
and jet events. Later the ultimate precisien({.5%) and the absolute calibration will be obtained using
Z — ete” decays and thé&'/p measurements for isolated electrons, such 8 ir- ev decays [7].
The latter requires a well understood tracking system. THifmity of the hadronic calorimeters can
be checked with single pions and jets. In order to obtain ¢hefergy scale (JES) to a few per-cent
precision or better, physics processes such asjet, Z(— ¢¢) + jet or W — 2 jets in top pair events
will be analyzed. Finally, the tracker and muon system atignt will be carried out with generic tracks,
isolated muons o — .~ decays. Regarding all these calibration and alignmenttsffthe ultimate
statistical precision should be achieved very quickly irstnzases. Then systematic effects have to be
faced, which, eg., implies that pushing the tracReralignment from an initial 00 zm to aboutl0 zm



might involve at least one year of data taking. More detaitadews of the initial detectors and their
performance can be found in Refs. [8] and [9].

The anticipated detector performance leads to the follgwistimates for the reconstruction pre-
cision of the most important physics objects :

¢ |solated electrons and photons can be reconstructed watla@ve energy resolution characterized
by a stochastic term (which is proportional 1¢\/E) of a few per-cent and an aimed-for 0.5%
constant term. Typically isolation requirements are defiibg putting a cone around the elec-
tron/photon and counting the additional electromagnetiit lzadronic energy and/or track trans-
verse momentum within this cone. The optimal cone sizg-in spacé depends on the particular
analysis and event topology. For typical acceptance cutd) as a transverse momentum above
10-20 GeV andn| < 2.5, electrons and photons can be expected to be reconstrudteexy
cellent angular resolution, high efficiency (90%) and small backgrounds. Again, the precise
values depend very much on the final state topology and thresmmonding tightness of the selec-
tion cuts. Most importantly, the systematic uncertaintytlos reconstruction efficiency should be
controllable at the 1-2% level, using in-situ measuremsothZ — e™e~ decays, with one of
the electrons serving as tag lepton and the other one as pliet for which the efficiency is
determined.

e Isolated muons, with similar acceptance cuts as mentiohedeafor electrons, should be recon-
structed with a relative transverse momentum resolutidn-ci% and excellent angular resolution
up to several hundreds of GeV. Again, a systematic unceytaimthe reconstruction efficiency of
1-2% appears to be achievable.

e Hadronic jets will be reconstructed up to pseudo-rapigiti€4.5 - 5, with good angular resolu-
tion. The energy resolution depends rather strongly onpkeeific calorimeter performance. For
example, in the case of ATLAS (CMS) a stochastic term of trieeopf 50 - 60% (100 - 150%)
is to be expected when energy deposits in projective catdantowers are used for the jet clus-
tering procedure. Important improvements on the CMS jetgneesolution are expected from
new approaches such as particle flow algorithms. Well abdwérigger thresholds jets will be re-
constructed with very high efficiency; the challenge is thderstanding of the efficiency turn-on
curves. In contrast to leptons, for jets the experimentatesyatic uncertainties are much more
sizeable and difficult to control. A more detailed discussiall follow below.

A further important question is the lowegt threshold above which jets can be reconstructed
reliably. Contrary to the naive expectation that only hjghebjects (around 100 GeV and higher)
are relevant, it turns out that many physics channels redeis to be reconstructed with rather
low transverse momentum ef 20 — 30 GeV. One reason for this is the importance of jet veto
requirements in searches for new physics, such as iflthe WW* — 2¢2v channel, where

a jet veto is necessary to reduce the top background. Theimgueal difficulties related to the
understanding of the lowy jet responsg the thresholds due to noise suppression, the impact of
the underlying event and additional pile-up events andnately the knowledge of the JES lead to
the conclusion that it will be extremely challenging, if nigtpossible, to reliably reconstruct jets
below apr of 30 GeV. In addition, also the theoretical predictions@hrallenged by very low
effects, as for example induced by jet veto requirementse lfieed-order calculations may have
to be supplemented by resummations of large logarithms.

e Finally, the missing transverse energy will be a very imaott’indirect” observable, which is
constructed from measurements of other quantities, suah eslorimeter energy deposits. Many
searches for new physics, such as Supersymmetry, rely vech ion this observable. However,
it turns out that it is also an extremely difficult quantityrt@asure, since it is sensitive to almost
every detail of the detector performance. Here it is evenenaliificult to give estimates of the

3Heren denotes the pseudo-rapidity andhe azimuthal angle around the beam pipe.
“The jet response is defined as the ratio of the reconstruntétha “true” jet momentum.



expected systematic uncertainties. Also, the reconsbrupierformance depends very much on
the details of the particular final state, such as the numbjgt®and/or leptons in the event, the
existence of “true” missing energy, e.g. from neutrinos,aimount of pile-up events and in general
the overall transverse energy deposited in the detectoe. VEhy first data will be of paramount

importance for a timely understanding of this quantity.

More detailed discussions of the expected detector andstwmtion performance can be found in recent
reviews ([8], [9]), for ATLAS in Ref. [10] and for CMS in its Bfsics Technical Design Reports (PTDR),
Vol. 1 [7] and Vol. 2 [11].

In the following | will concentrate on the early physics rhaaf the LHC experiments, i.e. on
measurements to be performed on the first few hundred pp to 1 fbo~! of integrated luminosity. Many
reviews exist on this topic, such as Refs. [9, 12—-14] to noenbinly a few. Most of the results presented
here are taken from the CMS PTDR Vol. 2 [11], because it regmissthe most recent comprehensive
overview compiled by one of the LHC experiments.

2.2 Jet production

Because of its extremely large cross section, the includipgs production (pp— 2 jets + anything)
completely dominates over all other expected LHC procesastisslarge momentum transfer. At low-
est order in perturbative Quantum Chromodynamics (QCO} dtescribed as 28 — 2 scattering of
partons (quarks and gluons), with only partons in the ihitidermediate and final state. Depending
on the exchanged transverse momentum (or generally thgyereale of the scattering process), the
final state will consist of more or less energetic "jets” wharise from the fragmentation of the outgo-
ing partons. Indeed, soft scattering processes, whichthwédargest contribution to the total inelastic
proton-proton cross section, are most likely, leading talfatates with hundreds of soft (i.e. below a few
GeV) charged and neutral hadrons, uniformly distributeer awost of the experimental acceptance in
pseudo-rapidity. Since these are the most likely processescur, they are triggered on with the least
stringent requirements and thus called "minimum-bias’néseFor the same reason they also represent
the typical pile-up events which can occur simultaneousti wther triggered proton-proton collisions.
Therefore very early measurements of the productiontaies the charged particle distributions will be
extremely important, in particular for the tuning of the wigused Monte Carlo generators. Here | will
not discuss further this class of measurements, but rativerentrate on the parton scattering at large
transverse momentum. Examples of envisaged studies ofmmmibias events can be found in [11].

For outgoing partons with transverse momentum well aboget&D fragmentation scalé (~
1 GeV) the picture of jet production arises, namely well e¢ollted bundles of particles, leading to
isolated clusters of deposited energy in the calorimet&sveral algorithms exist for the clustering
of the final state objects (simulated patrticles, calorim&ieers, charged tracks) into jets with a well
defined four-momentum, which in the optimal case closelycineg the four-momentum of the original
scattered parton. Examples of commonly used prescriptoaghe Iterative Cone, Midpoint Cone,
SISCone and: algorithms. In particular, the latter two algorithms reitgneceive a lot of theoretical
and experimental attention, mainly because of their ptypErbeing infrared and collinear safe to all
orders of perturbation theory. A detailed discussion osthget algorithms is given elsewhere in these
proceedings, as well as in [15-17] and references therein.

For the measurement of the inclusive jet cross section wplgioount the number of jets inside
a fixed pseudo-rapidity region as a function ofjjet For a second typical measurement, the dijet cross
section, events are selected in which the two highggets, the leading jets, are both inside a specified
pseudo-rapidity region and counted as a function of thd @ijgariant) mass. Both cases are inclusive
processes dominated by the— 2 QCD scattering of partons. The distinction between ingkigts and

SCurrently the extrapolations from the TEVATRON up to the Lid@ergies suffer from large uncertainties. For example,
various Monte Carlo generators predict charged track plidiiies which differ by more than 30%.
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dijets is only in a different way of measuring the same precé&®r a common choice of theregion,
events selected by the dijet analysis are a subset of théseselected by the inclusive jet analysis, but
the number of events in the two analyses coming from QCD igebgal to be close at highy. The
steeply falling cross sections are shown in Fig. 1. For thRigive jet case, the spectrum roughly follows
a power law, however, with increasing power for increagingie., the power increases from about 6 at
pr = 150 GeV to about 13 gbr = 3 TeV and keeps on increasing with jet.
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b| o 10°F JL =0.1 b - E —— ;ld:g:.- ﬁ?’fﬁf,
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Fig. 1: Inclusive jet (left) and dijet (right) cross sectioreasurements as foreseen by CMS [11]. The central crosersect
values are taken from a leading-order calculation in depeoel of the transverse momenta of the hard interaction. ridesti
on the right plot indicates various trigger paths.

It can be seen that even for very small integrated lumiressitie statistical uncertainties will be
negligible, up to very high jet momenta. Thus the TEVATROIMMaile in terms of highest momenta and
therefore sensitivity to new physics, such as contactacteyns or heavy resonances, will be quickly
surpassed. For 1 fid, the inclusive cross section for central jet production j@¢ pseudo-rapidities
below~ 1) will be known statistically to better than 1% up t@a of 1 TeV, and the statistical errors on
the dijet cross section will be below 5% up to dijet masses T\

The real challenge for these measurements will be the ditation and control of the jet energy
scale. As mentioned above, the cross sections are stedpig fas a function of jep,. Therefore any
relative uncertainty on the jet; will translate into an-times larger relative uncertainty on the cross
section, where: indicates the power of the spectrum in a specifiedegion, ie.do /dpr < p;". For
example, &% uncertainty on the energy scale for jets around 100-200 Gdxansverse momentum
induces a30% uncertainty on the inclusive jet cross section. This is alsown in Fig. 2 (left), here
for the case of a 3% JES uncertainty. As a comparison, in Hidgat) we see the expected theoretical
uncertainties on the inclusive jet cross section from tlepagation of pdf uncertainties. These are below
the 10% level up to a jeir of 1 TeV, thus much smaller than the experimental system&ten the JES.
Therefore it is obvious that a measurement of the inclugiverpss section will not allow to constrain the
pdfs, unless the JES is known to 2% or better. This is definiel/ond reach for the early phase of the
LHC, and might remain a huge challenge even later. Furthexpieecause of these large experimental
uncertainties, it might turn out that the currently knowxtr-leading order (NLO) perturbative QCD
calculation of the hard scattering process is precise dnéaiga comparison to data. However, with
better experimental control at a later stage and/or othiémitiens of observables (see below) the need
for going to next-to-next-to-leading order (NNLO) mighisa.

Obviously, the knowledge of the JES also has a strong impath® achievable precision of the
dijet cross section measurement, as shown in Fig. 3 (lefjwever, the problem can be avoided by
performing relative instead of absolute cross section measents. A well suited observable is the dijet
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Fig. 2: Left: Relative systematic uncertainties of the ursive jet cross sections for the- algorithm versus jepr due to
a change in the JES af3% for three bins in rapidityy. The error bars indicate the statistical uncertainty. Righlative
uncertainties propagated from the error sets of the CTEQEBYIddfs, for the same regions in rapidity. Plots taken frdam] [

ratio N(|n| < |mil)/N(|ma| < 1] < |7ouws|), i€., the ratio of the number of dijet events within an
inner region|n| < |7 | to the number of dijet events within an outer regign| < 1| < |1out|- Both
leading jets of the dijet event must satisfy the cuts. In Ref. [11] the values chosen wefg = 0.5
andn.,s = 1, whereas in a recent update [19] of the CMS studies on in&umnd dijet production
they have been increased to 0.7 and 1.3, respectively. Jéteraliio has two interesting features. First,
it is very sensitive to new physics, such as contact intemastor the production of a heavy resonance,
because those lead to jets at more central rapidities thgenaoine QCD dijet events. Second, in the
ratio we can expect many systematic uncertainties to caral example, the luminosity uncertainty
completely disappears in the ratio. More importantly, dleJES uncertainty is strongly reduced, since
the dijet ratio is sensitive only to the relative knowleddehe scale as a function of rapidity, but not to
the absolute scale any more. This is well illustrated in Bifright), where the JES uncertainty is shown
to be reduced to about 3%. In this figure also the sensitigityew contact interactions at various scales
is indicated. Hence we have a nice example of a ratio measumewhere systematic uncertainties are
reduced. Having an observable in hand with experimentaésyatic uncertainties at the level of 5% or
less, it might become relevant to obtain a NNLO predictiarjéb production.

As we have seen above, the JES is the dominant source of aimtyrh jet cross section measure-
ments. Obviously, it is also important for many other anedyand searches which involve jet final states
and possibly invariant mass reconstructions with jets. réfoee major efforts are devoted by the ex-
perimental collaborations to prepare the tools for obtaRIES corrections, both from the Monte Carlo
simulations and, more importantly, from the data themsel@urrently approaches are followed which
are inspired by the TEVATRON experience [20, 21]. The cdioecprocedure is split into several steps,
such as offset corrections (noise, thresholds, pile-gtive corrections as a function gf absolute
corrections within a restrictegkregion, corrections to the parton level, flavour-specifiorections etc.
At the LHC startup we will have to rely on Monte Carlo correcis only, but with the first data coming
in it will be possible to switch to data-driven correctios. a later stage, after a lot of effort will have
gone into the careful tuning of the Monte Carlo simulatiohsnight be feasible to use Monte Carlo
corrections again. A rough estimate for the early JES uaitgyt evolution in CMS is 10% at start-up,
7% after 100 pb' and 5% after 1 fb! [22]. Certainly it will be difficult and require time to obtaia
detailed understanding of the non-Gaussian tails in therjetgy resolution.
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Fig. 3: Left : Systematic uncertainty on the dijet crossisactiue to JES (solid curve), parton distributions (dashede) and
calorimeter energy ang resolution (dotted curve), compared to the statisticakuainties for 10 fo! (errorbars). Right :
Systematic bounds on the dijet ratio from uncertaintieh@relative JES (dashed curve), parton distributions édattirve)
and calorimeter energy amdresolution (dot dashed curve), compared to the expecsatib@CD and three contact interaction
scales (solid line and curves). Plots taken from [11].

Concerning data-driven JES corrections, one of the besindisiisy-+jet production. At leading
order, the photon and the jet are produced back-to-back ttiiprecisely measured photon energy can
be used to balance the jet energy. Real life is more difficudtinly because of additional QCD radiation
and the large background from jets faking a photon. Theséeauppressed very strongly with tight
selection and isolation cuts (eg., no additional third jeha transverse energy beyond a certain threshold
and tight requirements on additional charged and neutealygrin a cone around the photon). The need
to understand well the photon-faking jet background andoti@on fragmentation is avoided by using
the channel Z— ¢¢)+jet, with electrons or muons, however, at the price of a logvess section.

Besides being a tool for obtaining JES corrections, betliet and Z + jet processes will also be
important handles for constraining the gluon pdf. It appdeasible to probe the gluon pdf at Bjorken-
values between about 0.0005 and 0.2 with a few per-censtitalierrors after only 1 fo' of integrated
luminosity [23]. Thez value is well determined using the lepton or photon kineasatinly, thus it does
not suffer from the less precise measurement of the jet mamenOf course, in order to consistently
constrain NNLO pdf sets (which should become more and mdeeaet with time), a NNLO calculation
of the hard scattering part of the process is needed. Whéneaappears beyond reach for thejet
case, the Z+jet process might be tractable within the notéo future. As discussed below, Z+jet (as
well as W+jet) production is a very important background nysearches, therefore having a NNLO
prediction should be very valuable, also as a benchmark fomt# Carlo generators which combine
leading order (LO) and/or NLO matrix elements with partoosér models.

2.3 \ector boson production

The production of vector bosons (W and Z), triggered on witksitsubsequent leptonic decays, will be
among the most important and most precise tests of the SMAtHIC. The leptonic channels, mainly
electrons and muons, can be reconstructed very cleanliglashatistics, with excellent resolution and
efficiency and very small backgrounds. At the same time,tikeretical predictions are known to high
accuracy, as discussed in more detail below. This precisiirbe useful for constraining pdfs, by
measuring the rapidity dependence of the Z production @essgon, in particular when going to large
rapidities and thus probing lowvalues. As proposed in [24], this process will serve as adstahcandle
for determining to high precision (at the few per-cent I¢teé proton-proton luminosity or alternatively
the parton-parton luminosity. Finally, it will be attemgt® improve on the current precision of the W
mass. Besides that, W and Z production will be an importapegrmenter’s tool. As mentioned already
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earlier, Z and W decays to leptons will be used to understadaalibrate various sub-detectors, measure
the lepton reconstruction efficiencies and control evemilssing transverse energy measurement.

Below | will first discuss the inclusive case, concentratimgresonant production. Then | will
highlight some issues for the W and Z production in assamawith jets. Although being highly in-
teresting processes, di-boson production will not be dised here, since for integrated luminosities up
to 1 fb~! the statistical precision will be the limiting factor forebe measurements and only allow first
proofs of existence and rough validations of the model etghens.

2.3.1 Inclusive W and Z production

Inclusive W and Z production currently is and probably wdhrain the theoretically best known process
at the LHC. Predictions are available at NNLO in perturtat@CD, fully differential in the vector
boson and even the lepton momenta [25]. Figure 4 (left) shbe< rapidity distribution at various
orders in perturbation theory. We see that the shape gtebilvhen going to higher orders and that the
NNLO prediction nicely falls within the uncertainty band thie NLO expansion, giving confidence in
the good convergence of the perturbation series. More itaptly, the renormalization scale uncertainty
is strongly reduced at NNLO, to a level of about 1% for Z rajpdi below 3. A renormalization scale
uncertainty even below 1% can be obtained for ratio obsésauch as (W*)/o(W~) ando (W)/o (Z),
possibly as a function of rapidity. Again, ratio measuretaeame interesting also from the experimental
point of few, since many systematic uncertainties cancelptetely or to a large extend. The prospect
of a precise measurement and knowing the hard scatteringptre process so well means that we
have a tool for precisely constraining pdfs (or couplingd arasses, in a more general sense). Indeed,
when taking the full theoretical prediction for the W and Dghuction cross section, ie., the convolution
of pdfs and hard scattering part, its uncertainty is doneiddiy the limited knowledge of the pdfs,
currently estimated to be around 5-7% [26, 27]. This willrttedso limit the proton-proton luminosity
to a precision of this size, unless the pdfs are further caimgd, mainly by the rapidity dependence of
the cross section, as for example shown in Ref. [26]. It ishvooting that at this level of precision also
electro-weak corrections have to be considered [28-30].

An important point to make in this context is the importanééaving differential cross section
predictions. If we take resonant W and Z production at cémeetor boson rapidity, we probevalues
of around 0.006, a region rather well constrained by theetuinpdf fits. However, for larger rapidities
we probe more and more the smallegion, which is less well known, eg., at leading order arrdafo
Z rapidity of 3 we need (anti-)quark pdfs at= 0.12 andz = 0.0003. Experimentally, because of
the detector acceptance, we can only access a limited gidnref the full phase space. This means
that when measuring a total cross section, we have to exaitgpthe measurement to the full accep-
tance (eg., full rapidity), which introduces a model deparwk, especially on the poorly known law-
region. On the other hand, having differential predictiome can compute exactly the same quantity as
we measure, thus eliminating any extrapolation uncestaitmilarly, for constraining NLO (NNLO)
pdfs, exactly the same acceptance cuts (on the leptons)ths otata can now be applied on the avail-
able NLO (NNLO) predictions. Of course, with more and moredential higher-order predictions
becoming available, this kind of argument applies to angEreection measurement (and/or deduced
determination of physics quantities such as couplings segdfs), namely that we should compare
the measurements and predictions for the experimentadigsaible acceptance and avoid un-necessary
extrapolations, which will not teach us anything new and/amiroduce additional uncertainties.

As mentioned above, the experimental reconstruction of \W Amproduction is rather straight
forward. Leptons are required to have a minimpmof about 20 GeV, within a pseudo-rapidity of 2.5
(cf. Fig. 4, right). In the Z case the mass peak allows foferrevent selections and background estima-
tions. However, the neutrino in the W decay leads to missiveggy, which obviously is reconstructed
less precisely. Instead of an invariant mass peak only #mswerse W mass can be reconstructed, with
larger backgrounds than for the Z. Here it is interesting émtion that a jet veto can help to control bet-
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Fig. 4: Left : QCD predictions at various orders of pertuitdatheory for the Z rapidity distribution at the LHC. The sleal
bands indicate the renormalization scale uncertaintyt @alken from [31]. Right : Generated rapidity distributicor fll Z
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calorimeter (b=barrel, e=endcap). Also shown is the rapistribution of the finally accepted Z events. Plot takemf [11].

ter the QCD backgrounds and to improve the resolution of tissing transverse energy reconstruction.
However, a jet veto introduces sensitivity to law-QCD radiation, thus comparing the measurement to
a calculation for the same acceptance cuts will only be nmgduili if soft-p resummation effects are
taken into account in the predictions. Fortunately, with Zi+jet process we have an experimental han-
dle to study these issues rather precisely (see also bedowg the radiation pattern in W+jet and Z+jet
events is very similar. In Ref. [11] it has been shown thabnstruction efficiencies and ultimately cross
section measurements with systematic uncertainties drdn(or better) should be possible, excluding
the luminosity uncertainty.

2.3.2 W/Z+jets production

Vector bosons produced in association with jets lead to $itadés with highs leptons, jets and possibly
missing transverse energy. Such a topology is also expémtedany searches, in particular for squark
and gluino production and subsequent cascade decays. Bhyvit will be important to understand
these SM processes as quickly as possible and validatediiatde Monte Carlo generators, which typ-
ically combine LO matrix elements with parton showers. Andtard observable will be the W/Z cross
section as a function of the associated leading jet trarsvaomentum or the number of additional jets.
Obviously, such measurements will suffer from the same Ji®mainties as the QCD measurements
discussed above, and thus constitute only limited calimabols during the early data taking. The prob-
lem can be reduced by defining clever ratios of cross segtiovsiving different vector bosons and/or
number of additional jets, or by normalizing the predicfida the data in limited regions of the phase
space (eg. for small jet multiplicity and extrapolating éoger multiplicities). A completely different
approach is to take a more inclusive look at this processhensense that the Z transverse momen-
tum is measured from the lepton kinematics, which is possibhigh statistical and, more importantly,
high experimental accuracy (cf. Fig. 5). This distributican be understood as the convolution of the
Z+0/1/2/ . . jets distributions, therefore any model intended to dbscfi+jets production has necessarily
to reproduce the 2 distribution over its full range. As mentioned above, irsthontext it would be
highly desirable to have a NNLO prediction, possibly mattiéth a resummation calculation, for a
comparison to the precise data and as benchmark for othemapyations, implemented in Monte Carlo
simulations.
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2.4 Top pair production

The top quark is produced very abundantly at the LHC. With 1 fof integrated luminosity, we should
already have a couple of thousand clean signal events orirtdpe di-lepton channel, and a factor of
10 more in the single lepton channel (lepton+jets channddl). [The physics case for the study of top
production is very rich and can not be discussed in detad.ifeor example, a recent review can be found
in Ref. [32]. Combining many different channels, a top masasurement with a precision of 1 GeV
might be achieved, which together with a precise W mass meamsnt constitutes an important indirect
constraint of SM predictions and its extensions. The prodoaross section (for single and top-pair
production) will be an important measurement, again fotingshe SM predictions and because top
production is a copious background to a large number of neygips searches. In the single muon+X
channel, the top-pair production cross section will so@n @ith about 1 fb') be measured with a
statistical precision of 1%. The total uncertainty of 104excluding the luminosity uncertainty) will
be dominated by systematics, most notably due to the kngeled the b-tagging efficiency. At the
moment it seems difficult to reduce this uncertainty to bel®&o [11], even for much larger integrated
luminosities. Therefore this should be seen as a benchnadule Yo be challenged by the theoretical
predictions. Efforts are under way to compute the NNLO amifoas to top-pair production and it will
be interesting to compare the ultimately achievable the@ieprecision to the experimental accuracy.
Precise higher order predictions (possibly including neswation), both for inclusive top and top+jets
production, should also be very valuable for obtaining jgebackground estimates, such as in Higgs
searches. Although it will be tried to calibrate the backopads with the data themselves, by using
background-enriched samples for the normalization [3]3,1Bé theoretical predictions are still needed
for the extrapolation from the background-rich to the slggr&iched regions of phase space. A good
theoretical precision will lead to reduced systematicshenttackground, which will be most relevant for
searches with small signal-to-noise ratios. It is worth tiwgring that for the measurement of the b-jet
cross section similar observations hold as for the toptlhe statistical error will soon be negligible,
whereas the systematic uncertainty is expected to be ata+#260%, dominated by the JES.

Finally, top production will become an extremely valuabéditaration tool. The mass peak can
already be reconstructed with much less thanZ fleven without b-tagging requirements. With a clean
sample in hand, it can be exploited for controlling the bgiag efficiency and serve as a closure test for
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the JES corrections determined from other processes. @ongehe JES, the mass of the hadronically
decaying W serves as a calibration handle. CMS expectsdhattermediate jebr values this sample
could lead to JES uncertainties around or below 3% [11].

2.5 Conclusions

| have summarized the experimental and theoretical présp@csome of the most important measure-
ments of SM processes at the LHC, namely jet, vector bosoriagmproduction. The early benchmark
measurements will include the inclusive jet cross sectiomdijet cross section and the dijet ratio, pho-
ton/Z plus jet production, the Z rapidity distribution, it of W and Z cross sections, the Z transverse
momentum distribution and top pair production. | have iatkd the expected uncertainties of the mea-
surements and shown how these processes serve as toole fardarstanding of the detector, for the
control of backgrounds and for the validation and tuning até Carlo generators. Particularly inter-
esting are ratio measurements, because otherwise impeytstiematic uncertainties cancel out in this
case. With differential predictions at higher order in peosation theory in hand, | have highlighted the
importance of comparing theory and experiment for the satnegance cuts, thus avoiding extrapola-
tion errors. It is important to have (differential) NLO pietibns, possibly combined with resummation
calculations such as implemented in the Monte Carlo geselMC@NLO [35, 36], for as many pro-
cesses as possible. For the cases where this appears tdicadtdd achieve, LO plus parton shower
approaches might still be very valuable tools. Howeverhéigrder predictions, up to NNLO, should
be aimed for as benchmarks, at least in a few cases. | havifieiédijet, Z+jet and top production as
most interesting cases for investing the efforts toward$ 8Nalculations.
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NEW APPROACHES

3. ON-SHELL RECURSION RELATIONS 6
3.1 Introduction

The efficient calculation of scattering amplitudes with maxternal legs is a challenging task and
needed for phenomenological studies at TeV colliders. &ghst years, various new methods for
efficient calculations in QCD have been introduced, oriynaotivated by the relation of QCD am-
plitudes to twistor string theory [37]. These methods idelthe diagrammatic rules of Cachazo, &k
and Witten (CSW) [38], where tree level QCD amplitudes anestmicted from vertices that are off-
shell continuations of maximal helicity violating (MHV) gfitudes [39], and the recursion relations of
Britto, Cachazo, Feng and Witten (BCFW) [40, 41] that candtiscattering amplitudes from on-shell
amplitudes with external momenta shifted into the complex@. These developments have triggered
significant research and numerous applications towards Boplitudes in QCD [42—63]. In addition,
when combined with the unitarity method [64,65] the recumselations have proven very useful for one-
loop calculations in QCD [66-95]. Here, we would like to mwithe basics of the on-shell recursion
relations for Born QCD amplitudes and the proof of its validi

5Contributed by: C. Schwinn, S. Weinzierl
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3.2 Helicity amplitudes and colour decomposition

Itis a well-known fact that the complexity of a calculatioaged on Feynman diagrams grows factorially
with the number of external particles. In order to keep the sf intermediate expressions under control,
a divide-and-conquer strategy has been proven useful: @raed the quantity to be calculated into
smaller pieces and calculates the small pieces separately.

One first observes that it is not necessary to square the tahgland sum over the spins and
helicities analytically. It is sufficient to do this numealty. This avoids obtaining(N?) terms from an
expression wittO(N) terms. The individual amplitudes have to be calculated ielecity or spin basis.
This is straightforward for massless fermions. The two-ponent Weyl spinors provide a convenient
basis:

lpE) = %(li%)u(p)- (1)

In the literature there are different notations for Weylngps. Apart from the bra-ket-notation there is
the notation with dotted and un-dotted indices: The retelietween the two notations is the following:

pH)=ps, (p+|=pi ) =05  (-|=pt ()

Spinor products are defined as

(pg) ={p—lg+), [pal = +lg—), 3)

and take value in the complex numbers. It was a major breakitin, when it was realised that also
gluon polarisation vectors can be expressed in terms ofcooponent Weyl spinors [96-102]. The
polarisation vectors of external gluons can be chosen as

vy o g = lk—) - _ g byulk)
e g v

wherek is the momentum of the gluon ards an arbitrary light-like reference momentum. The depen-
dence on the arbitrary reference momentuwill drop out in gauge invariant quantities.

The second observation is related to the fact, that indalithelicity amplitudes can be decom-
posed into group-theoretical factors (carrying the colsmuctures) multiplied by kinematic functions
called partial amplitudes [103—107]. These partial ampkis do not contain any colour information and
are gauge-invariant objects. In the pure gluonic case énex dmplitudes wit external gluons may be
written in the form

9

(4)

An(L,m) = "% Y 2Tr(T%W. T%m) A, (0(1), ..,0(n)), (5)
Uesn/Zn

where the sum is over all non-cyclic permutations of the melegluon legs and the normalisation of

the colour matrices is TT*T® = §? /2. The quantities4,, on the r.h.s. are the partial amplitudes

and contain the kinematic information. They are coloureoed, e.g. only diagrams with a particular

cyclic ordering of the gluons contribute. In general, thibaofactors are combinations of open strings
(Tr...T"), ;. and closed strings T ... %) of colour matrices. These building blocks form a basis
in colour space. The choice of the basis for the colour atrestis not unique, and several proposals for
bases can be found in the literature [108-110].

3.3 Spinor space versus momentum space

It will be useful to discuss the relationship between spspace and complexified momentum space. Let
us first fix our conventions. The metric tensopjs = diag(+1, —1, —1, —1). A null-vector satisfies

(p0)* — (1) — (2)*> — (p3)> = 0. (6)
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This relation holds also for compley,. In complexified momentum space it is possible to chooseia bas
consisting only of null-vectors:

€1 = (17 0,0, 1)7 €2 = (Oa L, i,O), €3 = (07 1, —1, 0)7 €4 = (170707 _1)> (7)
is an example of such a basis. Light-cone coordinates aneedidis follows:

P+ =Do+D3, P—=Dpo—D3, PL=p1+ip2, pix=p1—ipa. (8)

Note thatp | - does not involve a complex conjugationyaf or po. A convenient representation for the
Dirac matrices is the Weyl representation:

0 ot . 10 b B}
’Y“=<Uu 0 ) 75:270717273:<0 _1>, oy =01,-d), =15, (9

with ¢ = (0,,0,,0.) being the Pauli matrices. A Weyl spinpy, is an element of a complex two-
dimensional vector spacs and similar a spinap ; is an element of (another) complex two-dimensional
vector spaces’. We will think of p4 andp as independent quantities. The dual spacé will be
denoted byS, its elements by#. Similarly, we denote the dual spacedbby S’ and its elements by
pB. The two-dimensional antisymmetric tensor provides ammphism betwee and S as well as
betweenS’ andS’:

p? =eBpp, pp =plean, pt=epy, vy =pte s (10)

We take the two-dimensional antisymmetric tensor as
EAB:&‘ABzeAB:sAB:< 0 1). (12)
Spinors are solutions of the Dirac equation, therefore we fiar massless Weyl spinors
puo” [p+) =0,  puotlp—) =0,  (pFH|pue" =0,  (p—[puo” =0. (12)
As normalisation we take for massless spinors
(p—loulp=) =2pu, P+ |oulp+) = 2pp. (13)
The solutions to egs. (12), (13) and (10) are
. 1 : 1
ez(a—§¢) —p @_Z(a+5¢) P
oy = S (i Yy S ey
P+ P+

= oy = e
D - \/m PL,DP+), p — \/m P+,DPL*) -

Here a is an arbitrary phase angl is the phase op, = |p|e’®. The spinors corresponding to a
four-vectorp,, are only determined up to a phase. With these spinors we have

(14)

(pg) [gp] = 2p-q. (15)

It is worth to note that the relatiom(p) = u(p)™", or equivalently

) =+, )T =], (16)
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holds only for reap,, and positivep, (e.9.¢ = 0), since
= ), = S
p = \=P1x) , P+ ), p—) = —F— P+ ,PL )-
vV P+ vV Ip+|

Here the upper asterisk denotes the usual complex conjugaipair of spinorgp ;, pp) determines a
(unique) null-vector through

(17)

L4
P = =040, B =

. o+ [l 18)

2
This is just eq. (13) written reversely. For arbitrary and pp the four-vectorp,, will be in general
complex. While eq. (14) defines a map from complexified monmangépace to the spinor spaSeand
S’, which is unique up to a phase, eq. (18) goes in the reversetitin: It defines a map from the space
S’ x S to complexified momentum space. In this context it is wortbhieerve that if we change; or
pp (but not both) by a linear transformation as

Pi—DPi+2q; O pB— PB— 24B, (19)

the resulting four-vectap,,(2) will be a linear function ot. Note however that a linear changeginas
in p, — pu + 2q, With a subsequent application of eq. (14) will not result imaar change i ; nor

pB-

3.4 On-shell recursion relations

In the previous section we have seen that we can associatg tul-vectorp,, a pair of spinorsp ;, pg).
From this pair we can reconstruct the original four-vedtwotigh eq. (18). To state the on-shell recursion
relations it is best not to view the partial amplitudg as a function of the four-momenta, but to replace
each four-vector by a pair of two-component Weyl spinorseréfore the partial amplitudg,,, being
originally a function of the momenta; and helicities);, can equally be viewed as a function of the
Wey! spinorsk’,, kj and the helicities\;:

An(klp)\lu"wkn))\n) - An(k}élulea)‘177kgak%7)\n) (20)

Let us now consider the-gluon amplitude. For the recursion relation we single aud particles; and
J- 1 (N, Aj) # (=, +) we have the following recurrence relation:

A, (kil,kg,Al,...,kz,k”B,An) - (21)
3 ZAL( A ...,z‘f%A,zf(B,—A) %AR (KAKBAkaJBAJ)
partitions A==+

where the sum is over all partitions such that partidke on the left and particlg is on the right. The
momentumk is given as the sum over all unshifted momenta of the origgnédrnal particles, which
are part ofA,. In eq. (21) the shifted spinofs,, k;.g, K 4 and K are given by

N 4 L . . . K . kB . EAK -
By = kY — 2k, K=k 4kl Ky=-—AB g AB (22)
AT BB TE TR GrIKi+) 2 G+
and
K2
[ (23)
(i 4 |K|j+)
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Here we shifted:’, and k:jB while k:i.‘ and kfé were left untouched. We could equally well have used

the other choice: Shifting’, and k%, while leavingk’, and &/, unmodified. In this case one obtains
a recursion relation valid for the helicity combinatiofs;, )\jf # (+,—). Therefore for all helicity
combinations of \;, \;) there is at least one valid recursion relation. Applying tigicursion relation to
the six-gluon amplitudels(1—,27,37,4", 51, 61) with three positive and three negative helicities, we
choose(i, j) = (6, 1). In this case only two diagrams need to be calculated and warothe compact
result

Ag(17,27,37,47, 57, 67) =
(64 |1+ 2[3+)3 (44 15+ 6[1+)3

A [61][12](34)(45)s126(2 + |1 + 6]5+) * [23][34](56) (61)s156(2 + |1 + 6]5+) | - (24)

3.5 Quarks, massive or massless

QCD does not consist solely of gluons, but contains the guaskwell. Let us now discuss the general
case of the inclusion of massive quarks. All formulae wil/éa smooth limitn — 0, therefore the
case of massless quarks will need no further discussionmgssive fermions we have to consider Dirac
spinors. We can take them as

1 N .
u(+) = CEI) (P+m)lgE), ua(x)= CES) (aF|(P+m),
o(E) = (p—m) lgE), D) = ————(gF | (F—m). (25)

P Flgt) (qF [P"£)
Here,p is the momentum of the fermion amgt) and(q + | are two independent Weyl spinors used as
reference spinors. These two spinors define a light-like-f@etorg” = (g + |v#|g+), which in turn

is used to associate to any not necessarily light-like f@atorp a light-like four-vecton?’:

2

P-q

The reference spinors are related to the quantisation &xiespin for the fermion, and the individual
amplitudes with labekl- or — will therefore refer to this spin axis. From the Dirac spmave can
reconstruct the four-vecto¥* as follows:

Po= 1S a (). (27)
A

For the recursion relation, we again single out two parsi¢cland j, which need not be massless, with
four-momenta; andp;. To these two four-momenta we associate two light-like fimamenta; and/;
as follows [111,112]:

1 1 _ 2pipj — sign(2pip; ) VA

li = = e (pi —ajpj), 1= (—aipi +p5), o 207

— (28)
1-— Q05

with A = (2pip;)* — 4p7p;. These light-like four-vectors define massless spitigrs), (I; + |, [1;+)
and(l; + |. If particle is a massive quark or anti-quark, we user) and(l; + | as reference spinors
for particle:. If particle j is a massive quark or anti-quark, we uge-) and(l; + | as reference spinors
for particlej. We have the recursion relation

Ap (u1(=), @1 (), A1y ey Un (=), Tn(+), An) = (29)
DD AL (=), (), Ay ooy 10 (=), 105 (), =)

partitions A=+
)

XmAR (e (=), W (F), A oy g (=), Wi (4), Mgy o0 -
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Here we denote b¥ the intermediate particle where we factorise the amplitade by K the off-shell
four-momentum flowing through this propagator in the untskifamplitude. We shift the Dirac spinors
as follows:

_ B K? — m%
For the intermediate partickewe define the polarisations with respect to the referencesgi;+) and
<li =+ |Z

/ 1 , ,, 1 ,
ug'(—) = ) (B +mi) [i=),  dx(+) = [T L= (B +my), (31)
where
K2

K" = K" = (i + l+), K = K" b+ G+ (32)

2+ K+
The recursion relation is valid fdi\;, ;) # (—, +) with the following exceptions:

e Particlesi andj cannot belong to the same fermion line.

e The combination$q;", g;°), (¢, 9;). (9; ,4; ) and(g;, q; ) are excluded.

e If i is massive, the combinationig, ¢; "), (¢, 7;"), (¢, ¢j*) and(g;", ;™) are excluded.

o If j is massive, the combinatiotg; , ¢;~), (¢; ,¢;~), (¢; ,¢;~) and(g; , q;~) are excluded.
Instead of shifting:;(—) andu;(+), we can alternatively shift;(4) andwu;(—):

2 2
, K= —my

For the intermediate particlewe define the polarisations now with respect to the referspeeors|/;+)
and(l; + |:

1
(K" +[1;—)

1

o W ), G4

ur' (=) = (B +my) =), ag(+) =

where
K2

S 35

K" = K" = Z(l+ [ l+), K = K"

Doing so, we obtain a recursion relation valid fo;, A;) # (+, —) with the following exceptions:

e Particlesi andj cannot belong to the same fermion line.
inafi + Y (ot 7Y (0= o — =
e The combinationsg;”, ¢;"), (9;",d; ), (¢; ,g9; ) and(g; , g; ) are excluded.

70

e If j is massive, the combinationig, ¢; "), (¢;", ¢;"), (¢, ¢j*) and(g;", ¢; ") are excluded.

o If i is massive, the combinatiotg; , ¢; ™), (¢; ,7; ), (¢; ,¢;~) and(g; , q;~) are excluded.
As we are free to choose the particleand j, we can compute all Born helicity amplitudes in QCD
with two-particle shifts via recursion relations, excepe ones which involve only massive quarks or
anti-quarks. Amplitudes consisting solely of massive gsand anti-quarks and with more than six
particles may be calculated recursively if one allows maeegal shifts, where more than two particles
are shifted.

22



3.6 Proof of the on-shell recursion relations

For the proof [41,45,49-51, 62] of the on-shell recursidatien we discuss as an example the case of
the holomorphic shift as in eq. (22) or eq. (30). One consitlee function

A(Z) = An (7@%/(_),’&,%(4—),)\“,uj(—),ﬂ;(—f-),A],) (36)
of one variablez, where thez-dependence enters through
wi'(=) =wi(=) = 2ll+),  w(+) = a;(+) + 2+ |- (37)

The functionA(z) is a rational function of, which has only simple poles in This follows from the
Feynman rules and the factorisation properties of ammgud herefore, ifA(z) vanishes for: — oo,
A(z) is given by Cauchy’s theorem as the sum over its residuess iShHust the right hand side of
the recursion relation. The essential ingredient for treoprs the vanishing ofA(z) at z — oo. If
(Xi, Aj) = (+, —) it can be shown that each individual Feynman diagram vasifiree — oo. For the
helicity combinationg+, +) and(—, —) one first constructs a supplementary recursion relatioadas
three-particle shifts and deduces from this represemtétio large:-behaviour ofA(z). This establishes
the recursion relation for these helicity combinationdwiite exceptions indicated above. The proof for
the anti-holomorphic shift as in eq. (33) proceeds analstyou

4. ON-SHELL RECURSION TO DETERMINE RATIONAL TERMS

On-shell methods offer an auspicious approach for dealitiy tive rapid growth in complexity of loop
amplitudes as the number of particles in the process ineseaBhese methods rely on the unitarity of
the theory [113, 114] which requires that the poles and birants of amplitudes correspond to physical
propagation of particles. On-shell methods are presentigrgoing intense development for use at loop
level (see, for example, refs. [76,77,79,85,87-94,118h1Their advantage lies in the relatively mild
growth in complexity as the number of external particleséaseseffectively reducing loop calculations
to tree-like calculations

On-shell methods fall into two basic categories: the uititanethod [64, 118] which constructs
amplitudes based on their branch cuts, and on-shell rexuj40, 41] which constructs amplitudes from
their poles. In this section we discuss using on-shell m@oaras a means for computing rational terms
of one-loop amplitudes. The loop-level construction isdaadirectly on the construction of tree-level
recursion relations by Britto, Cachazo, Feng and WittenFBG, though a number of new features are
present. Further discussion of the unitarity method apgroas well as other new methods exploiting
on-shell conditions on intermediate states [70,79,89884,119] may be found in other sections of this
report. Introductions to on-shell methods may be found mioves reviews [120-122]. Earlier reviews
of spinor methods, which are profitably used in conjunctidgthwen-shell methods, may be found in
refs. [123,124].

In the context of the unitarity method, it is convenient tidé the amplitudes into pieces that
contain branch cuts, plus rational (non-cut-containirigt@s. When using dimensional regularization,
the branch-cut containing pieces may be computed by iggdha distinction betweel® = 4 — 2¢
dimensions and four-dimensions in the numerators of thp-lmomentum integrands [64, 118]. This
observation allows powerful four-dimensional spinor t&@glues to be used to greatly simplify the on-
shell tree amplitudes appearing in the unitarity cuts. H@xef one wants to obtain also the rational
terms directly from the cuts [120, 125], then the2¢) dimensional contributions are crucial: dropping
these pieces leaves undetermined additive rational t€ithg. branch cuts can determine rational terms
atO(€%) because they develop branch cut®at).) By using amplitudes valid i = 4 —2¢ dimensions
in the unitarity cuts, all rational terms are k&put at the cost of more complicated expressions. It has

"Contributed by: Z. Bern, L.J. Dixon

8In the language of dispersion relations [126, 127], thisnstruction is possible because the dispersion integoaleerge
with dimensional regularization [128].
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physical poles E

C

spurious poles

Fig. 6: Using Cauchy’s theorem, rational terms in loop atopks can be reconstructed from residues at poles in theleemp
plane. The poles are of two types: physical and spuriousp@li locations are knowa priori. Residues at physical poles
follow from factorization onto lower-point amplitudes. §t@ues at spurious poles cancel against correspondinglmaitins
from the cut parts, and so they can be inferred from four-dsianal cuts.

been pointed out [80-83] that the rational terms are redbtigasy to obtain from Feynman diagrams
because they do not require the full set of tensor integtaladdition, Brandhubeet. al. have argued
that the rational terms can be obtained from a set of cowntas [115]. Britto and Feng have recently
given a complete set of formulae for constructing loop araghss, including their rational terms [94],
following earlier work [70,79,87-90, 119].

An early version of on-shell methods was used to compute tleel@op matrix elements needed
for the NLO QCD corrections tete™ — v*, Z — 4 jets anthp — W, Z + 2 jets [129]. They have also
been used to obtain analytic expressions for the completdanp six-gluon amplitude [64, 66, 68, 70,
76,77,79-82,118] as well as a variety of helicity configiarag forn-gluon amplitudes [72, 75-77,91].
The results confirm the mild growth in complexity of these hoels as the number of external particles
grows.

A crucial next step for applying these methods to LHC phy&dke construction of automated
programs to compute the large number of phenomenologiaahyesting high-multiplicity processes.
As discussed in other sections of this report, such autaaiegrams are in the midst of being con-
structed [93, 116], using the integration machinery of Ggd@apadopoulos, and Pittau [85]. The recent
numerical implementation by Ellis, Giele and Kunszt [116{le unitarity method presently makes use
of D = 4 simplifications and hence does not contain rational terrhs.grogram of Ossola, Papadopou-
los, and Pittau [93] can be used to obtain the rational tebuscurrently requires one-loop Feynman
diagrams to capture these terms, instead of more efficiesheti tree amplitudes.

On-shell recursion offers an efficient alternative for damsting one-loop rational terms directly
from their known factorization properties, in much the samag as the BCFW recursion relations can
be used to obtain tree-level amplitudes. However, a numbeew issues arise at loop level that must
be dealt with first to have a practical method. These issudigde the appearance of branch cuts, spuri-
ous singularities, the behavior of loop amplitudes undeyda@omplex deformations and in some cases,
‘unreal poles’, which are present with complex but not reahmenta. More practical issues are automa-
tion and numerical stability. Here we briefly summarize tbagtruction of rational terms via on-shell
recursion [71-73,76,77,91], describing in particularra@e modification making it straightforward to
automate.

In general, any one-loop amplitude can be divided into tvezes,
A = er|Co+ Ral (38)

where(C,, are the ‘cut-containing terms’ possessing logarithmsylpgharithms, and associatets. The
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(c)

Fig. 7: Diagrammatic contributions to on-shell recursiovme-loop for g3, 1) shift. The labels ‘T’ and ‘L’ refer to tree and
one-loop vertices corresponding to the rational partswélepoint on-shell amplitudes.

rational terms, denoted by,,, are defined by setting these (poly)logarithmic terms tozer

(39)

In,Lig,7—0

Let us assume that the cut-containing terf)sof the particular amplitude under consideration have
already been computed using four-dimensional unitaritiis Teaves the problem of computing the
rational termsRz,,.

On-shell recursion relations can be derived by considaromgplex on-shell deformations of am-
plitudes A(z), which are characterized by a single complex paramefdl]. The z-dependence al-
lows us to use standard complex variable theory to consamgiitudes via Cauchy’s Theorem. To set
up an on-shell recursion relation fét,, consider the effect of shifting some set of external momenta
ki — ki(z), such that the on-shell conditiof¥s;(z)]?> = m? and the original momentum conservation
are satisfied. In the massless case, it is particularly coexéto shift the momenta of two external legs,
say,j andl,

Z . _
ki = kj(2) =k = 5070,

zZ,._ _
k= k(@) =R+ 50T, (40)

wherez is a complex parameter and™) and|i~) are Weyl spinors of positive and negative chirality,
following the notation of ref. [123]. In terms of these spigahe shift is

)= T —2l7), ) = 1% + 2 157). (41)
We denote the shift in egs. (40) and (41) dg.,4) shift.
The on-shell recursion relations follow from evaluating ttontour integral,

L g Bale) (42)
2m Jo z

where the contour is taken around the circle at infinity, ggaled in fig. 6, andR,,(z) is R,, evaluated
at the shifted momenta (40). If the rational terms under ic@mation vanish as — oo, the contour
integral vanishes and we obtain a relationship betweendhkigat! rational contributions at= 0, and a
sum over residues of the polesBf,(z), located at,,,

Rn(2)
Rp(0)=— > Reszmzy =2 (43)
poles a
If R, (%) does not vanish as — oo, then there are additional contributions. A systematiatsgy for
computing such large contributions using auxiliary recursion relations wassgrged in ref. [76], to

which we refer the reader.
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Fig. 8: Diagrammatic representation of one-loop overlamsefor a7, [) shift. The channels correspond to physical poles and
remove double counts induced by cut completion.

As illustrated in fig. 6, the poles in one-loop rational terfal$ into two categories: the physical
poles, which are present in the full amplitudes; and theisparpoles, which cancel against poles in the
cut-containing terms.

Residues at physical poles are dictated by factorizatiom lower-point amplitudes. They may be
computed using the recursive diagrdrsfig. 7,

Ry - Z Res.=z,, Balz)
phys. poles {r,s} z
ree Z Z ree
= Z{AtL (z = zrs) 7 Rr(z = zrs) + Rr(z = zps) % AR (2 = 2,4)

TS TS

r,8,h

ree ZR ree
+ AT (2 = 2,4) K,f A (2 z)} (44)

The ‘vertices’R;, and Ry in this recursion relation are the pure rational parts —giiire definition (39)
— of the lower-point, on-shell one-loop amplitudes. Thertiees’ A%°® and A%}*® are on-shell tree
amplitudes. The subscripfs and R on the vertices indicate their location to the left or rigffttioe
central propagator in fig. 7. In the vertices the shift vagahis frozen to the values
e

" T R ) )
corresponding to the location of the poleszincoming from shifted propagators. The rational pa
of the factorization functiors# [130] only contributes in multi-particle channels, andyoiflthe tree
amplitude contains a pole in that channel. Generically wee e double sum, labeled by s, over
recursive diagrams, with legsandi always appearing on opposite sides of the pole. There isaadsm
over the helicity of the intermediate state. The supersciipon R” indicates that this set of recursive
diagrammatic contributions is not the whole rational pastdiscussed below.

It is interesting to note the similarity of the one-loop resian relation (44), to the corresponding
tree-level recursion relation [41],
i
K2

T8

Agee = Z A%ee(z = Zrs)

r,s,h

Athee(Z — er) . (46)

Thus loop-level recursive diagrams echo the simplicityreétlevel recursion.

One way to deal with the spurious poles is to start by findingua tcompletion’ C, 73,76, 77,
91,122]. One adds certain rational terrﬁ.‘R to C,, such that the spurious poles G?h( ) cancel
entirely. Because physical amplitudes cannot have spsigsogularities, the remaining rational terms,

%Unreal’ poles, which do not correspond to factorizatioristhweal momenta, may be avoided by choosing appropriate
shifts [76].
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Rn(z), must also be free of these spurious singularities. Thiseotpletion makes it unnecessary to
compute residues at spurious poles. It is rather helpfulhvdegiving compact analytic expressions for
the amplitudes. It does introduce additional ‘overlap diags’, as depicted in fig. 8. These diagrams
correct for the contributions c(f’l\%n in physical factorization limits. They are simple to comgtrtom
the residue o€'R,, at each physical polg;.

Following the cut-completion procedure, a variety of ratibterms with an arbitrary number of
external legs have been constructed [75-77, 91], givingpdeta amplitudes when combined with the
previously-computed cut-containing parts [64, 68,69974118]. More generally, it should be possible
to form a set of cut completions using integral functionstw type given in ref. [131] to absorb the
spurious singularities.

For the purposes of automation in a numerical program, anathbproach is preferable [132]. It
is simpler to obtain the residues at the spurious poles ttiiréom the cut parts, calculated from the
four-dimensional unitarity method. Because a completelitiae is free of spurious poles, any spurious
pole found in the rational parts must cancel a spurious polled cut parts. To get the full rational part,

R, =RP + RY, (47)

we add to the recursive diagram’ some ‘spurious’ contribution®?, evaluated by means of the cut
termsC,,(z),

Rn z Cn z

spur. poles (3 spur. poles (3

The spurious poles can be classified systematically in terms of the vanishing id(z) = 0, of shifted
Gram determinant&\ associated with box, triangle and bubble functions. (Inrnfessless case, the
bubble Gram determinant does not generate a spurious pole.)

To illustrate this modified procedure, consider the fiveeglamplitudeélgl)’s(l—, 27,3, 4% 51),
with a scalar in the loop. The construction of the rationahigin this amplitude, using on-shell recursion
with cut completion, has already been discussed in somd détewhere [73,122]. Here we describe
the new approach for obtaining these terms.

The cut part of the amplitude [133] is

_ _i <12>3 n —523 0 —S51
& = ~smanmEn () ()
e s BE + pausey (58
(3 4> <4 5) (851 - 523)3

wherey? is a scale and * -’ signifies that we are dropping terms not pertinent for oscdssion. The
spinor inner products and kinematic invariants are defised a

+o o (49)

Wl =

{ab) = (a” |bT), [ab] = (a™|b7), Sap = (ko + kb)2 ) (50)

The rational terms are determined by evaluating the re@isagrams, plus the rational residues
of the cut terms at the spurious poles. Here we usdltf® shift. (As discussed in ref. [73, 76], for
this shift there are no additional contributions from eitlege = behavior or unreal poles.) With the
[1,2) shift, the non-vanishing recursive diagrams are depicidi 9. A simple computation of these
diagrams (see section 5.1 of ref. [122]) gives,

3
Déa):2<i_'_§ <12>

i [24][35)3
3e 9) (23)(34)(45)(51)’

p =2 (51)
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Fig. 9: Non-vanishing recursive diagrams for the ratioeaits ofA{"*(1~,27, 3% 4% 5T), using a[1, 2) shift.

as the recursive contributions.

We still need to account for the residues at the spuriousptriethe present example with B 2)
shift, the only such pole comes from solvigg (z) — s23(2) = 0 (corresponding to a shifted two-mass
triangle Gram determinant). The solution is,

L= 851 — 523 _ 551 — 523 (52)
T (15)[52] + (13)[32]  (14)[24]

To obtain the residue, we start from the logarithmic termspf(49), and perform thg, 2) shift eq. (41),

yielding,

Cs(z) _ i [34J(41)((24) + 2(14))[45](((23) + 2(13))[34](4 1) + ((24) + 2(14))[45](5 1))

z 3 (34)(45)

((23)+2(13))[32]
1“(—<51><u 5}—425}))

X

(551 — 523 — (LAY (53)

where we have kept only the term contributing to the spurresglue at;.

The residue needed for eq. (48) can be extracted straigtafdly, by series expanding both the
logarithm and its coefficient in eq. (53) around- z,. Cleaning up the result of this residue evaluation,
we find,

Séa) = ResZ:ZSC5—(Z)
i (2034 i (19BBI(9B4 - (15)35)
© 6(15)(23)(34)(45)[23] 6 (15)(34)(45)[15][23]?
i s BN ((2 3)[34](41) + (24)[45](5 1)) o
6 523551 (551 — S23)° (34)(45)
The total rational part,
Rs = RP + RS = DI 4 DI + 5, (55)

matches the result obtained in refs. [73,122] using a cupdetion. The complete amplitude is obtained
by summing the cut (49) and rational (55) contributions.

The modified construction described here is amenable tavaiton. In a numerical program,
instead of obtaining the residues at spurious poles bysexpansion, we may compute them by nu-
merically evaluating the cut terms at several points ar@awh pole. The automation and numerical im-
plementation of on-shell recursion to amplitudes of indefer LHC phenomenology will be described
elsewhere [132].
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5. FOUR- AND D-DIMENSIONAL UNITARITY CUTS 10
5.1 Four-dimensional unitarity cuts

The application of unitarity as an on-shell method of caltioh, as introduced in [64], is based on the
principles that products of on-shell tree-level amplitsigeoduce functions with the correct branch cuts
in all channels [134-137], and that any one-loop amplitwadele expressed as a linear combination of of
scalar (i.e. trivial numerator) master integrals [138j1&ven the independent knowledge of the master
integrals, to compute any amplitude it is sufficient to eadithe coefficients of such a decomposition.

For one-loop amplitudes, systematic techniques have beeglaped to extract the coefficients
algebraically, preserving gauge invariance at every inégliate stage of the computation. The use of
four-dimensionaktates and momenta in the cuts enables the constructioe illglogarithmic terms
in the amplitudes, which are fixed by their branch cuts, buategieally drops rational terms, which have
to be recovered independently.

Some recent developments of unitarity-based methods agplgralized unitarity cuts to ampli-
tudes and master integrals. The coefficients are then ¢x¢ttag matching the generalized cuts. General-
ized unitarity corresponds to requiring more than two iméparticles to be on-shell, and the fulfillment
of these constraints can only be realized through complesrkatics. Complex kinematics are the key
for the exploration of singularities of amplitudes and tlse of factorization information to reconstruct
amplitudes recursively, since the singularities of a scait) amplitude are determined by lower-point
amplitudes in the case of poles and by lower-loop ones indke of cuts [39, 120,123, 124].

A notable application of complex momenta within generaliaaitarity is the quadruple cut, which
allows for an immediate and purely algebraic determinatibthe coefficients of box functions [119].
Every box coefficient is simply determined by the productha four tree-level amplitudes sitting at
each corner, evaluated at the two particular values of thp kmomentum which fulfill the four equa-
tions imposed by the vanishing of the cut denominators. [oahd triple unitarity cuts have led to
direct techniques for extracting triangle and bubble irdegoefficients analytically [70,79,89]. In cases
where fewer than four denominators are cut, the loop monmerigunot frozen, so some explicit integra-
tion over the phase space is still required. In [70, 79, 88Qlde or triple cut phase-space integration
has been reduced to extraction of residues in spinor vasabind, in the case of a triple cut, residues
in a Feynman parameter. This approach has been used to aoanmlitically the final contributions
to the cut-constructible part of the the six-gluon ampl&ido, 79], and the complete six-photon ampli-
tudes [83, 84].

In general, one can computepoint (n > 4) coefficients from quadruple cuts, three-point coeffi-
cients from triple-cuts, and two-point coefficients fromutdte-cuts, by avoiding the conventional tensor
reduction. As it turns out, given the decomposition of anypltde in terms of master integrals, the
coefficient of anyn-point master integral can be recovered from thparticle cut. Obviously, any-
particle cut may also detect higher-point master integvetiéch appear with different analytic structures
for they come from the Landau poles specific to each of theenasttegrals. This is indeed the case
for the usual (double) unitarity cut, which can be used esighly to derive box, triangle, and bubble
coefficients. In cases with massive particles, it is usef@ply a generalized cut to find the coefficient
of the 1-point (tadpole) master integral.

The algorithm of [70, 79] for evaluating any finite unitarityt involves a change of coordinates
that brings the loop momentum variable into the spinor fdisna The idea is that the final integrals
always localize to some poles in the region of integratiohad® space integration is thus reduced to
a sequence of algebraic manipulations, up to an integratiena single Feynman parameter, which is
responsible for logarithms. Ultimately, even this intégma does not need to be carried out, since it
is possible to match integrands at an early stage of the laéitso. The procedure naturally leads to
a clean separation of the master integrals, allowing fomaividual calculation of the corresponding

0Contributed by: R. Britto, P. Mastrolia
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coefficients.

By now, explicit analytic formulas for the results of unitgrbased methods are available [90, 92,
94,95, 119]. Coefficients of the master integrals are liglieectly in terms of tree-level input data. All
integration and reduction can now be avoided. Although i mat be a significant distinction in terms of
the final results, we note that the derivations of [92,95] Ls@d generalized cuts, while those of [90,94]
used ordinary double cuts.

5.2 D-dimensional unitarity

Full one-loop amplitudes can be reconstructed from umjtarits inD = 4 — 2e dimensions [125, 128].
In the D-dimensional unitarity method, there is no need to distisigtrational” and “cut-constructible”
parts of the amplitude. Contributions that might be calleatibnal” (after expanding around= 0)
appear here asdependent terms in the coefficients of the master integbetore expanding around
e =0).

A systematicD-dimensional unitarity double-cut method was propose®ih 88], reducing one-
loop amplitudes to master integrals for arbitrary valuethefdimension parameter. Coefficients of the
master integrals can be extracted without fully carrying the D-dimensional phase space integrals.
Only a four dimensional (massive) integration is explicittquired. That can be performed by four-
dimensional unitarity techniques or any other availablerahtive. The remaining integral, which gives
rise to thee-dependence of the cut-amplitude, is mapped to phase-sgageals ind + 2n — 2e dimen-
sions, wheren is a positive integer. With recursive dimensional shiftritiges, similar to the ones in
loop integration, the cut-amplitude is reduced in termsuddlide, triangle, box and pentagon cut master
integrals in4 — 2¢ dimensions. The reduction is valid for an arbitrary numifedimensions. Expand-
ing in e gives both the (poly)logarithmic and rational part of thepditnde atO(e”) and higher; these
contributions are required in cross-sections beyond thx¢-toeleading order in the relevant coupling
strength.

Generalized unitarity cuts are possible and usefdbidimensions as well [89, 144]. The benefits
of the double-cut integration of [70, 79, 87, 88] have beeemdted to the evaluation of triple cuts [89],
for the direct extraction of triangle and higher-point-€tion coefficients from any one-loop amplitude
in arbitrary dimensions. Accordingly, the triple cut isdted as a difference of two double cuts with the
same particle content, and the same propagator carryipgatgely causal and anti-causal prescription
in each of the two cuts. The triple cut phase space for a nsssphrticle inD dimensions is written
as a convolution of a four-dimensional triple cut of a masgearticle, and an integration over the cor-
responding mass parameter, which plays the role @f 2¢)-dimensional scale. Just as in the case of
the double-cut [87, 88], to perform the four-dimension&gration, one combines the method of spinor
integration of massive phase-space integrals, and arratieg over the Feynman parameter. But, in the
case of the triple-cut, after Feynman parametrization,dsghining back the two double-cuts, the para-
metric integration is reduced to the extraction of residoae branch points in correspondence of the
zeroes of a standard quadratic function in the Feynman paeauit is that standard quadratic function
(or rather, its roots) that carry the analytic informatidraracterizing each master integral, therefore de-
termining its own generalized cuts. The final integratioardhie dimensional scale parameter is mapped
directly to the triple cut of master integrals, possiblylwshifted dimensions.

5.3 Mathematica package for spinor formalism

Recently, the package S@M (Spinors@Mathematica) wassedled 45]. It implements the spinor-
helicity formalism in Mathematica. The package allows the aof complex-spinor algebra along with the
multi-purpose features of Mathematica, and it is suitabtdlie algebraic manipulation and integration
of products of tree amplitudes with complex spinors sewreinegalized unitarity cuts.
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6. COMMENTS ON UNITARITY BASED ONE-LOOP ALGORITHMS 11
6.1 Introduction

At the LHC deviations from the Standard Model will likely skiaip in observables of complex multi-
particle final states. It is important to understand the &ath Model predictions and uncertainties for
these complicated final states. Leading-order Monte Ca@-NIC) programs give a first estimate.
However, to understand the uncertainties we need at leasttamleading order Monte Carlo (NLO-
MC).

The basic calculational framework for both tree-level aimges (needed for the LO-MC) and
one-loop amplitudes (needed for NLO-MC) is the perturleagxpansion in Feynman diagrams. This
immediately gives us a straightforward algorithm suitdbfenumerical implementation. However, such
implementations are not satisfactory from a numericaldgtamt. The number of Feynman diagrams
grows faster than factorial with the number of externalipkas involved in the scattering process. As a
consequence the number of multiplications, and theref@e&bdmputer time needed to evaluate a phase
space point, will grow at least as fast.

In computer science, algorithms with factorial growth aalerl exponential or factorial algorithms
or simply E-algorithms [146]. Such algorithms are not cdeséd optimal, i.e. the number of external
particles we can calculate becomes quickly limited by campresources. In contrast, the other class
of algorithms with polynomial growth in the number of extaregs are called P-algorithms. Such
algorithms are highly desirable as the added computatedfat needed to go fronV to (N +1) external
particles is(%)a. This means the limiting factor for these types of algorigimscattering amplitude
calculations is often human resources instead of compesaurces. In the subsequent sections we will
argue that for numerical solutions, especially in the efaH€ physics, the complexity of the algorithms
are an important consideration.

6.2 Tree-level algorithms of polynomial complexity

The number of Feynman graphs grows very fast with the numbexternal legs. For a tree-level
N-gluon scattering the number of individual Feynman graphagproximatelyN(N=3) (within 5%
accuracy up to 16 gluons) [147]. This means that to extend @&/1C from 2 gluon — 5 gluon to

2 gluon — 6 gluon, the number of multiplications increases by at ledatctor of 13. Several LO-MC
are available for the numerical evaluation of arbitrarethevel processes in the Standard Model and
some of its extensions. Most of these packages are basethpledteynman diagram evaluations. We
call these Numerically Implemented Exponential (NIE) aitjons. A prominent representative in this
class of algorithms is MadGraph [148].

By using currents instead of amplitudes in Feynman diagralcutations one can construct re-
cursion relations [149]. This method re-uses recurringigsoof off-shell Feynman graphs in an optimal
manner. Because this leads to a more factorized way of egicglthe scattering amplitude one can im-
mediately extend the analytic calculations to more compl@&cesses such as vector boson production
with up to 6 partons [150, 151] and 7 parton processes [152].

Another consequence of the recursion relations is the flation of an algorithm of polynomial
complexity. For a tree-leveN-gluon process the number of multiplications growsNa5[147]. This
means that to extend the LO-MC frotngluon — 5 gluon to2 gluon — 6 gluon the increase in
the number of multiplications is only 1.7 (compared to 13 $tandard Feynman graph calculations).
We will denote the LO-MC programs based on recursive typevaluation Numerically Implemented
Polynomial (or NIP) algorithms. A prominent representais’the ALPGEN program [153].

As is clear from the discussion we have reached a point foM©where the problem of numer-
ically calculating the scattering amplitudes can be carsid solved.

"Contributed by: R.K. Ellis, W.T. Giele, Z. Kunszt
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6.3 Toward one-loop algorithms of polynomial complexity

The LO-MC prediction at LHC type of energies for QCD and/oedito-Weak processes are rather
gualitative. One estimates the magnitude of the crossoseatid predicts the shape for an observables.
The NLO-MC will give us a first real estimate of the expectedmalization and will give an ordetg
correction to the shape. Within the perturbative contastaliows us to estimate the uncertainties on the
predictions with some confidence.

The one-loop amplitude of the baslagluon — 2 gluon was already calculated analytically in
1986 [154] using the standard Feynman diagram calculatiame can extend this method brute force
with modern day computers. Using a combination of e.g. QGREF5] and FORM [156] one can
generate and manipulate the Feynman graphs giving tensfiicdents times tensor integrals. The tensor
integrals can be determined using Pasasarino-Veltmarctied157] or other techniques. This then
can be straightforwardly implemented in a numerical codeefg. 2 gluon — 4 gluon [158]. The
evaluation of a single phase space point for this procedsiemrder 9 second (10,000 times slower as
the 2 gluon — 2 gluon one-loop amplitude generated using the same proegduis clear that such a
direct approach using Feynman diagrams is severely affégtéhe factorial growth in complexity. One
needs badly a polynomial complexity calculational apphoac

It can be shown that any dimensional regulated multi-loopléade is fully reconstructible using
unitarity cuts [159]. Because the unitarity cuts factosizbe one-loop amplitudes into a product of
two tree-level amplitudes this proves the existence of grpohial complexity algorithm for one-loop
calculations. This was exploited in the analytic calcaiaf theete~ — 4 partons one-loop amplitude
[129] 2. The method applies four-dimensional unitarity cuts, éhgrit only partly reconstructs the one-
loop amplitude through unitarity, the so-called cut-constible part. The missing part is referred to as
the rational part and is determined by other methods. Thieabf-dimensional unitarity method has no
direct numerical equivalent, but it is explicitly demoraéd that such methods of polynomial complexity
work very well within the context of analytic multi-leg orleep calculations.

The first numerically implementable method came from theated quadruple cut method [119].
While presented as an analytic method to calculate coefificief the 4-point scalar master integrals for
multi-gluon processes, it has a direct numerical impleaigot. The numerical procedure can be used
to calculate the box coefficients for any multi-particle tseang process. By applying the quadruple
cut the one-loop graph breaks down into four tree-level &oges. This is therefore instantly a NIP
algorithm for calculating the coefficients of the 4-pointstex integrals. From the unitarity constraints,
i.e. the four cut propagators have to be numerically zere, gets only two complex solutions for the
loop-momentum. By evaluating the product of the four treesl graphs using the two complex loop
momenta solutions, one gets the coefficient by simply awegagver the two solutions.

The numerical implementation of the method is extremeliydad simple, showing the potential of
a full numerical implementable unitarity method. To ackiévis one also has to calculate the coefficients
of the other 3 master integrals (the 1-, 2- and 3-point sdatagrals). A direct generalization of the
quadruple cut method becomes complicated because of pgartacontributions. By applying a triple
cut to determine the 3-point coefficient one has to take iotmant that part of this contribution is also in
the quadruple cut. Disentangling these overlapping douions proves to be not that straightforward.

For a one-loop amplitude one can construct a general pariarfaam of the integrand and deter-
mine its coefficients by demanding different combinatiohseis of propagators to be zero (i.e. cutting
the lines) for both the parametric form of the amplitude amel éxpression obtained using Feynman
graphs [85]. This method is purely algebraic as it works @nititegrand level. When setting four propa-
gators to zero this method is identical to the quadruple athod. However, we now get in addition the
full loop dependence of the integrand of the 4-point mastections through its parametric form. This
allows one to simply determine the triple cut contributidriree parametric 4-point integrand and hence

12The 5 gluon one-loop was calculated using string inspirethous [133].
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we know the subtraction term.

Using this method to construct the subtraction terms it is styaightforward to formulate a nu-
merical implementable algorithm of polynomial compleXiby the cut constructible part [116]. Because
we determine the coefficients of the 2-, 3- and 4-point pataoferm of integrands by the equivalent of
unitarity cuts, the actual one-loop amplitude factorizea product of two, three or four tree-level ampli-
tudes. Thatis, we can determine the full parametric forrheintegrand from tree-level amplitudes. The
final loop integration over the parametric form is straightfard and gives us the three scalar master in-
tegrals and their respective coefficients. This method ndenels the polynomial complexity algorithm
of the quadruple cut method to include also the triple andotioaut contributions. As a demonstra-
tion we used this method to numerically evaluate multi-glsoattering amplitudes. We found using a
single standard processor the following results: 2lgguon — 2 gluon at 9 seconds/10,000 events, the
2 gluon— 3 gluon at 35 seconds/10,000 events andtgkrion — 4 gluon at 107 seconds/10,000 events.
This can be approximated By° /450 seconds/10,000 events, which by extrapolation would givared
260 seconds/10,000 events fbgluon — 5 gluon. These evaluation times are more than sufficient for
use in NLO-MC generators, even on a modest single procegstars.

6.4 Conclusions: the rational part

The final step is a numerical suitable algorithm for the raigart of the one-loop amplitude. This is
the final hurdle in achieving a full solution of polynomialraplexity for numerical one-loop amplitude
evaluations. Three methods exist in the literature. Theriesthod determines the rational part of the
tensor integrals. These rational parts can then be coattativith the tensor coefficients to give the full
one-loop rational part [80, 83]. This method goes back tadREynman diagram expansion and leads to
an algorithm of factorial complexity. This negates all pregs made with the determination of the cut
constructible part using numerical unitarity techniques.

The other two methods are more analytic in concept, but shayprinciple be suitable for a nu-
merical implementation. The so-called bootstrap methdsl e a recursive procedure for the rational
part [76] similar to the tree-level unitarity based recarsielations [41]. This makes the method of poly-
nomial complexity. However, in its current formulation$tmot suitable for numerical implementation.
The reason is that both the rational and cut constructibtegb#he one-loop amplitude contain so-called
spurious poles. When adding the two parts together thes#spipoles cancel. This means that for
the construction of an unitarity based recursion relatiothe rational part these spurious poles have to
be removed. This procedure is called cut-completion, i.akerboth cut-constructible and rational part
free of spurious poles. Then the rational part contains phjysical poles and a unitarity based tree-level
like recurrence relation for the rational part is constilet Unfortunately the cut-completion procedure
requires analytic knowledge of the spurious terms, whictoupw have only be determined by explicit
analytic calculation of the cut-constructible part.

One can in principle retrieve the full one-loop amplitude dpplying D-dimensional unitarity
cuts [88,125]. Such an implementation is per constructiopodynomial complexity. It requires the
calculation of theD-dimensional tree-level amplitudes. This can be implemeibly restricting oneself
to massive scalar internal particles where the mass in g@teby the extra-dimensional length of the
loop-momentum. In this manner the extra-dimensional dfdhteloop-momentum can be integrated out.
After that one can read off the appropriate master integrafficients and rational part. The required
scalar internal particles restrict this method at the mdn@purely gluonic scattering amplitudes. In
its current implementation this method is restricted toliaapplications for purely gluonic one-loop
scattering amplitudes.

It is clear from the discussions that a numerical algorittfrpaynomial complexity is the only
issue left in fully solving one-loop calculations in a siarilay tree-level calculations have been solved.
Achieving this final step would open the way to a multitude &iONMC generators for processes such
as for exampleP P — tt +2 jets,PP — tt + bband PP — Vector-Boson + 3, 4 jets.
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A NIP implementation for the rational part has to exist. lesstruction in the near future is of
great importance to make the first step towards more contptdddLO-MC programs relevant for the
LHC phenomenology.

7. PHYSICAL APPLICATIONS OF THE OPP METHOD TO COMPUTE ONE-LO OP AM-
PLITUDES13

7.1 Introduction

In two recent papers [85, 86], we proposed a reduction teclen{OPP) for arbitrary one-loop sub-
amplitudes athe integrand leve[111] by exploiting numerically the set of kinematical etjaas for
the integration momentum, that extend the quadruple.et@pld double cuts used in the unitarity-cut
method [95, 116,118, 119]. The method requires a minimakrmétion about the form of the one-loop
(sub-)amplitude and therefore it is well suited for a nurerimplementation. The method works for
any set of internal and/or external masses, so that onedg@btudy the full electroweak model, without
being limited to massless theories.

In Section 7.2 we outline the basics features of the metho&ektion 7.3 we describe a numeri-
cally stable implementation of the OPP algorithm, in a fofra BORTRAN9O code,Cut Tool s [93]. In
the last section, we compute, as an application, the one@geD corrections to the procegs — ZZ 7
at the LHC, also showing distributions for physically irgsting quantities.

7.2 The OPP method

The starting point of the OPP reduction method is the gem@alession for thentegrandof a generic
m-~point one-loop (sub-)amplitude

N(Q) B — 2 2 5
_— DZ = —|— 7 - ]Ili 5 0 6
Dng...Dmlv (q P) 1707’é ( )

Alq) =
In the previous equation, we use a bar to denote objectglliin = 4+ ¢ dimensions, ang? = ¢+ 4>,
whereg? is e-dimensional andg - ¢) = 0. N(q) is the4-dimensional part of the numerator function
of the amplitude. If needed, thedimensional part of the numerator should be treated stggras
explained laterN (¢) depends on thé-dimensional denominator3; = (g + p;)? — m? as follows

m—1 m—1
N(q) = > [d(ioi1i2i3) +d(Q;i0i1i2i3)} II D
10<11<i9<13 17£10,11,12,13
m—1
+ ) [elioivia) + &(q; doiria)] H D,
10<11<i9 110,011,182
m—1
+ Z [b(zou)-i-b (q;i0i1) } H D;
10<11 17#10,01
m—1 m—1
+ > lalio) +a(gsio)] [ D
%0 1#10
_ m—1
+ P(g) [] Di. (57)

Inserted back in Eq. (56), this expression simply statesrtbki-pole nature of anyn-point one-loop
amplitude, that, clearly, contains a pole for any propagatthe loop, thus one has terms ranging from

3Contributed by: G. Ossola, C.G. Papadopoulos, R. Pittau
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1 tom poles. Notice that the term with no poles, namely that onggoonal toP(q) is polynomial
and vanishes upon integration in dimensional reguladnatherefore does not contribute to the ampli-
tude, as it should be. The coefficients of the poles can badugplit in two pieces. A piece that still
depend ony (the termsd, ¢, b, @), that vanishes upon integration, and a piece that do natriepn q
(the termsd, ¢, b, a). Such a separation is always possible and the latter saiefficients is immedi-
ately interpretable as the ensemble of the coefficients| gioaisible 4, 3, 2, 1-point one-loop functions
contributing to the amplitude.

Once Eq. (57) is established, the task of computing the oop-amplitude is then reduced to
the algebraical problem of fitting the coefficients:, b, a by evaluating the functiotV(q) a sufficient
number of times, at different values ¢f and then inverting the system. That can be achieved quite
efficiently by singling out particular choices @kuch that, systematically, 4, 3, 2 or 1 among all possible
denominatordD; vanishes. Then the system of equations is solved itergti¥étst one determines all
possible 4-point functions, then the 3-point functions smon. For example, calling” the 2 (in general
complex) solutions for which

Do=Dy=Dy=D3=0, (58)

(there are 2 solutions because of the quadratic nature girigagators) and since the functional form
of d(q;0123) is known, one directly finds the coefficient of the box diagremmtaining the above 4
denominators through the two simple equations

N(gy) = [d(0123)+d(qy;0123)] [ Dilar) (59)
1#£0,1,2,3

This algorithm also works in the case of complex denomirsatoamely with complex masses. Notice
that the described procedure can be perforateithe amplitude levelOne does not need to repeat the
work for all Feynman diagrams, provided their sum is knowre just suppose to be able to compute
N (q) numerically.

The described procedure works in 4 dimensions. Howeven eden starting from a perfectly
finite tensor integral, the tensor reduction may eventuelly to integrals that need to be regularized
(we use dimensional regularization). Such tensors arefibitt tensor reduction iteratively leads to rank
m m-point tensors withl < m < 5, that are ultraviolet divergent when < 4. For this reason, we
introduced, in Eq. (56), thé-dimensional denominator®;, that differs by an amounj? from their
4-dimensional counterparts

D;=D; + . (60)

The result of this is a mismatch in the cancellation of dhdimensional denominators of Eq. (56) with
the 4-dimensional ones of Eq. (57). The rational part of the amgé, calledR; [160], comes from
such a lack of cancellation. A different source of Ratiorairis, called?,, can also be generated from
the e-dimensional part ofV (¢) (that is missing in Eq. (56)). For the time being, it shoulddoeled by
hand by looking at the analytical structure of the Feynmaagiams of via a dedicated set of Feynman
Rules. Examples on how to compui® are reported in [160] and [161, 162]. The Rational Terfis
are generated by the following extra integrals, introduog85, 86]

. 9 2
no @@ amt [ s o (i —pj)
/d DD = 5 [mz+mj 3 ]—I—(’)(e),
~2 2 ~4 2
_ q (s _ q T
fi—4 __ _ " 9 ri—23=> - T 1 61
/ "D.D, Dy 5 T O, / "D.D, DDy 5 7O (61)

The coefficients of the above integrals can be computed kiirigoat the implicit mass dependence
(namely reconstructing th dependence) in the coefficients:, b of the one-loop functions, onég is
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reintroduced through the mass shiff — m? — 2. One gets
b(ij: @) = b(if) +@bP(if), clijh: @) = cijk) + P (ijk). (62)
Furthermore, by defining

m—1 m—1

DM (g, )= [d(ioilizi:ﬁ G*) + d(g; iviriais; @2)} IT o, (63)

10<i1<i2<13 17£10,11,12,13

the following expansion holds

D™M(q,¢%) =Y ¥ Vd> Y (q), (64)
7J=2

where the last coefficient is independentgon
d(2m—4) (Q) _ d(2m—4) ) (65)

In practice, once thé-dimensional coefficients have been determined, one canthedits for different
values ofg?, in order to determiné® (i5), ¢ (ijk) andd®*™—%. Such three quantities are the coef-
ficients of the three extra scalar integrals listed in Eq),(6dspectively. Therefore, the OPP method
allows an easy and purely numerical computation of the Ratiderms of typeR;.

7.3 Cut Tool s and the problem of the Numerical Inaccuracies

A FORTRAN9O program Cut Tool s) implementing the OPP method can be found in [93], to which
we refer for more details. We just mention that the only infation needed by the code is the number
and type of contributing propagators and the numeratortimmaV(¢) (and its maximum rank). A
particularly interesting feature of the OPP techniquey alsplemented irCut Tool s, is that it allows

a natural numerical check of the accuracy of the whole pracedGiven the paramount importance of
this issue in practical calculations, we describe it hergoime detail.

During the fitting procedure to determine the coefficientsnarical inaccuracies may occur due
to

1) appearance of Gram determinants in the solutions fortwdi@, 2 or 1 denominators vanish;
2) vanishing of some of the remaining denominators, whenptaed at a given solution;
3) instabilities occurring when solving systems of linequations;

In principle, each of these three sources of instabiliteas lse cured by performing a proper expansion
around the problematic (i.eexceptiondl Phase-Space point. However, this often results in a huge
amount of work that, in addition, spoils the generality ao# tigorithm. Furthermore, one is anyway
left with the problem of choosing a separation criterionderitify the region where applying the proper
expansion rather than the general algorithm.

The solution implemented iGut Tool s is, instead, of a purely numerical nature and relies on a
unique feature of the OPP method: the fact that the reduiiparformed at the integral level. In detail,
the OPP reduction is obtained when, as in Eq. (57), the nuordanction N (¢) is rewritten in terms of
denominators. Therefo® (¢) computed for some arbitrary value @by using the I. h. s. of Eq. (57)
should always ba@umericallyequal to the result obtained by using the expansion in the s. fThis is
a very stringent test that is applied@ut Tool s for any Phase-Space point. When, inexteptional
Phase-Space point, these two numbers differ more than alafeed quantity, the coefficients of the
loop functionsfor that particular pointare recomputed by using multi-precision routines (with ap t
2000 digits) contained iltut Tool s [163,164]. The only price to be payed by the user is writing,
beside the normal ones (namely written in double-precjsiamulti-precision version of the routines
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computingN (¢). The described procedure ensures that the coefficienteafcdlar loop functions are
computed with a precision defined by the user. Finally, omeikhmention that, usually, only very few
points are potentially dangerous, namexceptionglso that a limited fraction of addition@PUtime is
used to cure the numerical instabilities, therefore coragting the fact that the multi-precision routines
are by far much slower than the normal ones. This procedwséban shown to work rather well in
practice, as we shall see in the next section.

7.4 pp — ZZZ at one-loop

The calculation is composed of two parts: the evaluationidial corrections, namely one-loop con-
tributions obtained by adding a virtual particle to the toeder diagrams, and corrections from the real
emission of one additional massless particle from initrad éinal states, which is necessary in order
to control and cancel infrared singularities. The virtuadrections are computed using tOBP reduc-
tion [85, 86]. In particular, we make use Gfit Tool s [93]. Concerning the contributions coming from
real emission we used the dipole subtraction method [16Ediate the soft and collinear divergences
and checked the results using the phase space slicing mgté6épwith soft and collinear cutoffs, as
outlined in [167].

These results have also been recently presented, follavwegy different approach, by Lazopou-
loset alin Ref. [168]. A more complete study, that will also incluthe tase ofV *W~2Z, W+ ZZ, and
WHW~—W= production, will be presented in a forthcoming publicatj@9].

Let us begin with the evaluation of the virtual QCD correntdo the procesg; — ZZ7Z. We
consider the process

q(p1) + q(p2) — Z(p3) + Z(pa) + Z(ps) (66)

All momenta are chosen to be incoming, such thatp; = 0.

P ——----- b5
Y
------ P4
Y

P2 ——----- b3

Fig. 10: Tree-level structure contributingdg — ZZ 7.

At the tree-level, there are six contributions to this pssm;@btained by the diagram illustrated in
Fig. 10 by permuting the final legs in all possible ways. Owm@pl corrections are obtained by adding
a virtual gluon to the tree-level structures, as depictelign 11. Each of the eight diagram of Fig. 11
should be evaluated for six permutations of the final pasicbverall this calculation involves the reduc-
tion of 48 diagrams.

We perform a reduction to scalar integrals using@® reduction method [85, 86]. As described
in Section 7.2, we need to provide the numerical value of thmerator of the integrand in the loop
integrals. The numerator functiaii(¢) can be expressed in terms of 4-dimensional denomindrs
according to the decomposition of Eq. (57). For the parsiceghse of five denominators, that is the
relevant case for the process studied in this paper, we tave 5 and the indices range fromto 4.
Next, simply by evaluating the numerator functidiiq) for a given set of values af, we can extract all
the coefficients in Eq. (57).

The coefficients determined in this manner should be migtipby the corresponding scalar in-
tegrals. Since, in the process that we are studyingg-dependent massive propagator appears, we
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Fig. 11: Diagrams contributing to virtual QCD correctionsjf — ZZ 7

will only need massless scalar integrals. They are compusaty the packagénelLCop written by
A. van Hameren [112].

As an example, let us consider the pentagon diagram (thditegtam of Fig. 11). In our notation,
the integrand will read

Ns(q)
A = 67
O = T e+ - 070 = 22— o) la = 22)7] (©67)
with
N5(q) = {ﬂ(p2> 7a P(quz) V3Z P(qufps) VALZ P(q+p1+p5) V5Z P(q+p1) ’Ya u(pl)} (68)

The functionP(q) is the numerator of the quark propagator
Pg=4d+m,

while VZZ = V7% . ¢ , namely the contraction between he polarization vectohef-th Z bosone; and
the~-matrix in the vertexZqq

V2 =ievu(grw- + gfwy) (69)

where

2

For any fixed valuey of integration momentum, and for a given phase-space plitty) is simply the
trace of a string of known matrices. After choosing a repneeon for Dirac matrices and spinors, we
evaluateN (¢) by performing a naive matrix multiplication. By providinigi$ input to the reduction algo-
rithm, we can compute all the coefficients of the scalar iretisg(in other words, the “cut-constructible”
part of the calculation).

The last step is the calculation of Rational Terms. As exgldiin Section 7.2, part of this con-
tribution, that we callR,, is automatically included by the to the reduction algarithThe second term
Ry, coming from thes-dimensional part ofV5(¢), has been added by hand by looking at the Feynman
Diagram and turns out to be proportional to the tree-ordegolnade.

In the same fashion, we can repeat the calculation for ther @éven diagrams. However, our
method allows for a further simplification: for each fixed petation of the final legs, only the g-
dependent denominators of Eq. (67) will appear in the remgidiagrams. Therefore, we can combine
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all diagrams in a single numerator function and perform #uaction directly for the sum of such dia-
grams, allowing for a one-shot evaluation of the resulticejar coefficients.

We checked that our results, both for poles and finite pagtgeawith the results obtained by the
authors of Ref. [168].

In what concerns the real emission, we only have to deal wittai state singularities, where we
distinguishgg andqg initial states. For theg initial state, no soft singularity is present because the
corresponding tree-level contribution vanishes. We tebal the structure of the NLO partonic cross
sections is as follows:

NLO _ B v c A R A
%qq - / {dgqé +dogg +dogg + / daqé} + / [daqq o dgqé}
14%2% g VVVg
NLO _ C A R A
Oyq = / [+dagq/dagq} + / [dagq — dagq] , (71)
VVV g VVVyg

wheredo B, doV, do®, do ™, do* are respectively the Born cross section, the virtual, girtounterterm,
real and real-subtraction cross sections. Forghanitial state two dipoles are needed as subtraction
terms. Ifpg is the momentum which can become soft or collinear, the dipyim for gluon emission off
the quark is given by

. 8rasCr 1+ 32 B
PDI196:G2 ME 72
P o= P1-P2—P2-P6 —P1"P6
p1-p2
where the{p} are redefined moment§p;} = {pis, P2, D3, P, P5 }, Which are again on-shell and go to
{p1,...,ps} inthe singular limit, e.gp1s = Z p1. The regularised real emission part then reads
11 1

da(% — da;lq = [CF |M%({pj})‘2 — D919s:a2 _ PI296,41 d‘I)VVVg 7

6N 2819
where the factot /6 accounts for the three identical bosons in the final stateeMetails can be found
in [165, 169].

The hadronic differential cross section with hadron morméhtand P is the sum over all partonic
initial states convoluted with the parton distribution étions

do (P, P2) = Z/dzleQfa(ZlaMF)fb(Z%,uF)do'ab(ZlPla22P2) ; (73)
ab
where the sum runs over the partonic configuratignsq, 9q, qg, 94, 4g.

7.4.1 Numerical results

As an explicit example we present the numerical resultsHerdasewu — ZZZ for /s = 14 TeV

and using CTEQG6L1 [18]. The tree-order cross section haa kealuated using thelELAC event
generator [170-172]. In the following table the resultdirmafe presented for the tree-order cross section
oo, the ratio of the virtual to the tree-level cross sectiord #re real contribution, combining— and
6—point contributions, as described above, for all channads,uu, ug, gu, for different values of the
factorization(renormalization) scalg & pr = ug).
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scale o) Uv/Uo OR ONLO
= My | 1.481(5)| 0.536(1)] 0.238(2)| 2.512(2)
1 =2My | 1.487(5)| 0.481(1)| 0.232(2)| 2.434(2)
1 =3My, | 1.477(5)| 0.452(1)| 0.232(2)| 2.376(2)
1w =4My | 1.479(5)| 0.436(1)| 0.232(2)| 2.355(2)
1 =5My | 1.479(5)| 0.424(1)| 0.237(2)| 2.343(2)

As it is evident from these results, tHé—factor is quite sizabld1.58 — 1.69), whereas the
dependence on the scalds for both cases quite weak, due mainly to the electroweakatter of the
process.

2.75¢

Z.Sk

2.25¢

o [fb]

1.75¢

1.5 — . .  _ _ ]

1.25¢

/Mg

Fig. 12: Scale-dependence of the cross sectigono (solid line) compared with the tree-level cross sectigr{dashed line).
The scale is reported in the plot in unitsfz, from = Mz topu = 5M .

7.5 Conclusions

We presented a new method for NLO processes (OPP), in whihetttuction to known integrals is
performed at the integrand level. The method has been sfatiggested in a number of applications,
the latest being the production of three Z bosons at the LHC.

The efficiency of the method is quite good. It can be furthgrrioned if the numerical evaluation
of the integrand in the one-loop amplitude, by means of onrrelations, without relying on Feynman
diagrams, is developed [57].

In general, the speed, the precision and the simplicity ef@®P method, make it a very good
candidate for the construction of a universal NLO calculaigent-generator.
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Part Il

IMPROVEMENTS ON STANDARD
TECHNIQUES

8. GOLEM: A SEMI-NUMERICAL APPROACH TO ONE-LOOP AMPLITUDES 14

8.1 Introduction

The first collision data from the Large Hadron Collider (LH&)CERN are expected in a couple of
months, giving us the opportunity to explore unprecedemtaergies and luminosities. However, in
order that a discovery of New Physics can be claimed, it iswéial importance to have the Standard
Model physics under control. This includes e.g. understandf the detectors, the underlying event,
the luminosity determination, the jet energy scale [173) Rost of these issues, an interplay between
measurements and precise theory predictions is mandalttorg. hadron collider environment, multi-
particle/jet final states will be produced in abundance.rétoee considerable effort needs to be spent
to make predictions for multi-particle processes beyordéhading order. While the calculation of one-
loop five-point amplitudes can be considered as the stateedrt at the moment, the first complete cross
section for six-point processes at hadron colliders stilligs its completion. Many different approaches
to multi-particle production have been developed in theflag years, most of them being described in
these proceedings. For other reviews and very recent davelots, see e.g. [93,122,174].

Here we will focus on a method implemented in the prog@hEM (General One-Loop Eval-
uator of Matrix elements), which is based on a semi-numkeealuation of building blocks stemming
from the reduction of one-loop Feynman diagrams [175]. Tleénnfeatures of the formalism are the
following:

e Itis valid for massive and massless particles

e For N > 5 external legs, the reduction of rafk/V-point integrals is done algebraically, reducing
the rank and the number of propagators at the same time inredcigtion step. FolV < 5
we worked out form factor representations which allow toidvaverse Gram determinants in
exceptional kinematic regions.

e The infrared divergences are easily extracted analyiagalierms of triangles.

e The rational parts of the amplitudes are obtained as bytmtsdand can be projected out.

e The program has an analytic and a numerical branch: it caiompera complete reduction to
scalar integrals, represented in terms of analytic funsticuch a complete reduction introduces
inverse Gram determinants, but this branch can be chosely gaphase space regions where the
Gram determinants are sufficiently large (which is the biilthe phase space). As the evaluation
of analytic functions is fast, this speeds up the progransicamably as compared to a purely
numerical approach. Near exceptional phase space pdiatgragram allows to stop the reduction
beforedangerous denominators are produced. The building blaclevdluate in this case are
finite three- and four-point functions with Feynman parametin the numerator. As a brute-
force numerical evaluation of the four-point functions asher slow, we have worked out one-
dimensional integral representations, whose numerialation is extremely fast. Details will
be given in the following section.

We have implemented the reduction in algebraic manipuigtimgrams and have obtained fully an-
alytical results for several amplitudes using these methjadd4, 176—-179]. Without having efficient
and automated simplification methods to reduce the sizego@balytic expressions, the fully analytic
approach based on form factors suffers from factorial cexifyt and therefore does not seem to be

YContributed by: C. Bernicot, T. Binoth, J.-Ph. Guillet, Geilrrich, E. Pilon, T. Reiter
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appropriate for 6-point processes. The semi-numericalatazh is preferable in this case. For the cal-
culation of the rational terms alone the situation is défer as the form factor representations simplify
considerably when restricted to terms which can generéitmed parts [83].

8.2 Results

Below we will describe applications of our method to onegdax-point amplitudes and explain in detalil
certain features which guarantee a fast and numericallystadvaluation in all phase space regions.

8.2.1 The GOLEM numerical library

In the GOLEM ibrary, the strategy is to evaluate numerically higher elsional three- and four-point
functions in phase space regions where numerical indiabikrise due to spurious singularities. To be
specific, these integrals are six- and eight-dimensionatpoint functions[f”, If*“, and four- and
six-dimensional three-point functiod’, I?f)”, with or without Feynman parameters in the numerator.
While the triangles are two-dimensional integrals in Fegnmparameter space, the boxes a priori involve
integration over three Feynman parameters. As humeritegiations in multi-dimensional parameter
space are rather slow, we worked out one-dimensional iattegpresentations for these integrals, whose
evaluation is both fast and precise. In [175,180] we hawsaly presented other methods for the numer-
ical evaluation of Feynman parameter integrals, but thedimensional representations discussed here
are preferable, as they are much faster.

As an example, let us consider the case where two massivelpadcatter into two light particles
via a fermion loop. The two ingoing particles have a smalbe#y. In this kinematic region, the Gram
determinant is small. In this case, we have to evaluate fount functions with two adjacent massive
legs, and with Feynman parameters in the numerator. In figvelBlot the six-dimensional four-point
function with two adjacent massive Ieg@adj, against the absolute value of the coefficiénivhich is
proportional to the ratidet(G) /det(S), for a trajectory of points with0~15 < |B| < 1073.

In the GOLEM library, there is a cut which allows to split the phase space regions where the
four-point function is evaluated analytically from thosbkere it is evaluated numerically. The larger the
cut, the longer the evaluation takes, as more calls of thesnigal integration routine are made. On the
other hand, if the cut is too small, the analytical evaluatiauses a loss of precision of several digits.

As an illustration, we computé?(z;123) and we plot the real and imaginary parts for different
values of the cut: ¢ = 10! (Fig. 13),c = 1072 (Fig. 14) and: = 10~° (Fig. 15).

In the case at hand, the CPU time does not vary very much wéthuh the evaluation time ranges
from 0.14 s (on an Intel Pentium M 1.3 GHz) fer= 10! to 0.10s forc = 10~°. However, this
statement is hard to generalise to all possible situationsroing in a calculation of a complex multi-leg
amplitude. In any case, the autllows to adjust the trade-off between speed and precision.

8.2.2 Theun — ddss amplitude
With our method we calculated the one-loop six-quark amgét

A(u(pr, M), u(p2, A2) — d(p3, A3), d(pa, A1), s(ps, As), 5(p6, A6)) (74)

in massless QCD. The calculation has been carried out upingrshelicity amplitudes in the 't Hooft-
Veltman scheme. We have chosen a convenient colour basish ahows to split the amplitude as
follows

6
ZZCZAZA(plv >p6)7 (75)

A=l

42



~ -0.00 ~ 0.0
& R
N - N
N s N
S=0.0021~ =
= [ = |
& L £ 00019}
-0.0022~ |
-0.0023F X L .
[ c=10 0.0018} c=10
-0.0024 }
-0.0025F 0.0017}~
-0.0026f
[ 0.0016~
-0.0027}- |
-0.0028f L
5 0.0015
-0.0020F
0,003 vl vl ool v ool ol vl vl ol vl 1) 0_0014'\””.4 sond vod vl v vl ol v vound vond sl v 1)
10"°10*10"10"410*10%°10° 10° 107 10° 10° 10* 10° 10%°10*10%10*410%10"°10° 10° 107 10° 10° 10* 10°
B 1B|

Fig. 13: The six-dimensional four-point function with three Feymrparameters in the numeratdy; (z; 23 ), with two adjacent
massive legs and the cat= 107!,
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Fig. 14: The six-dimensional four-point function with three Feymrparameters in the numeratdi (z; 23 ), with two adjacent
massive legs and the cat= 1072,

whereA. are the helicity and colour subamplitudes. In particularcivese the colour structures

(CL,C2,C3,C, CP, C8) = (5225355, 522555663, 655 6¢2558, 563553682, 52366362 6€35°2653).  (76)

Cl "C4 7Ce?"C1 "Cq4"C7 "C1 "C4 °Cg? "Cl "Cq4 Cg? "Cl 'C47Cp? 7 C1l Cq4 Cp

In our notation\ is the vector(\q, ... , Ag), and\; = %1 is the helicity of the particle with momentum
p; of which the colour index is;. In the six-quark amplitude one can identify two independhaticites
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Fig. 15: The six-dimensional four-point function with three Feymrparameters in the numeratdy; (z; 23 ), with two adjacent
massive legs and the cat= 107°.

A = (4,4, 4, +, +,4) and\® = (+,+, +, +, —, —); all other helicities are either identically zero or
related toA® or \* by parity invariance, which is exploited in our calculation

We generated the Feynman diagrams for this process@@haf [155] and reduced the tensor
integrals usindFORM[156, 181] to form factors as defined in [175]. We deal withgp&or algebra by
completing spinor lines to traces, e.g. for an arbitrarydpidI” of Dirac matrices we use

1
- +\ _
7 7 T e T\
<MF\P>

With the help oFORM andJavacode the expressions for the diagrams are transformed Fidman90
program. Thezol enBO library is used for the numerical evaluation of the form éast In this approach
we found it advantageous to treat the spinor traces nuntigracawell, in order to keep the expressions
more compact.

The code returns the subamplitudes in the form

81/4 B
R m) = 252 (54 2w or o) (78)

for each of the six colour structures and for all non-zerdciteds, whereA, B and C are complex
coefficients. As an example we plot in Figure 16 the quantity)}|a; for one colour structur€' and
the two helicity configurationd® and \’. The initial state momenta are chosen to be along:tagis
while the final state momenta have been rotated abouj-teds by an anglé. Foré = 0 the momenta
are chosen as in Ref. [182]:

p3 = (33.5,15.9,25.0)
P = (—12.5,15.3,0.3)
ps = (—10.0,—18.0,—3.3)
(—=11.0,-13.2, —22.0) (79)
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Fig. 16: The six-quark amplitude. The finite parts of the leaurexpansion ie of s| A" |a;® (solid) ands| A}’ |a;® (dashed)
are plotted for a kinematic point defined in the text, wheeefthal state momenta have been rotated aboutaeis by an
anglef.

A B C
—0.0029670 — 0.0036065% 0.0203701 4 0.0281510¢ —0.0659100 — 0.10579401
0.0042784 4+ 0.00494747  —0.0191448 — 0.04201203 0.0338141 + 0.18207984
—0.0123663 — 0.01869811 0.1171088 4+ 0.1401148;  —0.4902357 — 0.4754639¢
0.0051836 + 0.00664597 —0.0462621 — 0.04774583 0.1803702 + 0.1706208:
—0.0143367 — 0.0137603% 0.1282264 + 0.1049820¢  —0.5199953 — 0.3972433¢
0.0083400 + 0.01004567 —0.0745825 — 0.0730179¢ 0.2929410 + 0.2459317i

OO WNPRPO

Table 3: Six-quark amplitude. Numerical values of the dhpart A)” ({p; },=1...¢)as > for the kinematics given in the text
andd = 0.

In the chosen units the renormalisation scaje is 1. The amplitude has been evaluated at 50 successive
points betweerd = 0 andf = 27 (0 = 0,0.126,0.252,...), which took 2.4 seconds per point and
helicity on an Intel Pentium 4 CPU (3.2 GHz). Table 3 showsrthimerical values of all coefficients for
the pointd = 0.
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9. ISSUES WITH THE LANDAU SINGULARITIES 1°
9.1 Introduction

Cross sections involving a large number of external pasiclan contain numerical instabilities which
must be carefully located and controlled. At tree-level caga mention integration overtachannel
pole if the integration variables are not properly choseihe €rossing of a resonance might also be
problematic. Beside these physical situations there nbghfake singularities specific to the way one
has set up the amplitude; one example is the singularityghricabout by an unlucky choice of a reference
vector at the helicity amplitude level. These problems aw@erbated at the loop level since the loop
integrals can also develop singularities. A prominent eenis the occurrence of vanishing inverse
Gram determinants: see for example the contribution of Bemmd Dittmaier. The latter is a fake
singularity that can be met for some special, and simplegrkitical conditions on the phase space
of the external particles having to do with how one has chasesis (independent) basis for the loop
integrals and how one has subsequently expressed the otreintegrals in this basis. Loop integrals
can also havérue singularities that have an underlying physical origin. yidepend on the dynamics
of the problem. Thresholds are one example, though harraleddrivial to locate. These types of
singularities belong to the general class of Landau simgi@s. The physical singularity can be revealed
by studying the analytic properties of the scalar integdre we study the case of one-loop integrals.
In particular we will review how the conditions for havingcsusingularities can be derived, especially
in a format that is conducive to an easy implementation inrapder code. When such a singularity
is present it is important to inquire whether this singulais integrable or not. We rederive here the
singular part. We then consider two specific complementaaynples taken from the recent literature.
The first one, the electroweak correctiongto— bbH, reveals a Landau singularity having to do with
massive, indeed unstable, particles in the loop. In this tas singularity is smoothed out by the width
of the unstable particles. The second is @hRghoton amplitude which involves massless states, both
internally and externally. In this case the Landau deteamiiis a quadratic function whose square root
is proportional to the Gram determinant.

9.2 Conditions for a Landau singularity and the nature of thesingularity

Consider the one-loop proceBs(p;) + Fa(p2) +
...+ Fn(pn) — 0, whereF; stands for either a
scalar, fermion or vector field with momentuysp

as in the figure opposite. The internal momentum
for each propagator ig with i = 1,... N. Each
momentumy; is associated with one Feynman pa-
rameterx; respectively. The scalar loop integral
reads

TN = / dPq 1
o (2m)Pi D1 Dy --- Dy’
Di = ¢ —mi+ie, q=q+mi
ry = ij, ’L'Zl,...,N, (80)
j=1

SContributed by: C. Bernicot, F. Boudjema, J.P. Guillet, NLB, E. Pilon
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The Feynman parameter representation reads

N
00 qu 1
TN:FN/ dry - dznd i—1/ , : 81
0 ( ) 0 T TN (;x ) (QW)DZ(I'lDl+.%'2D2+"'CCNDN)N ( )
Because of the Dirac delta function, the integration bownitethe Feynman parameter spaceare- 0,
i =1,...,N. Thus the only important condition arj is that they are not negativéhe singularities
are given by the Landau conditions [113,183]
Vi zi(q? —m?) =0,
(2 7 82
{ ZZ]\L1 z;q; = 0. (82)
Ifeq. (82) has a solution; > O foreveryi € {1,...,N},i.e. all particles in the loop are simultaneously

on-shell then the integral )Y has a leading Landau singularity (LLS). If a solution extsiswith some
z; = 0 while the otherz;’s are positive, the Landau condition corresponds to a laweder Landau
singularity (LOLS).

By introducing the matrixQ, under the conditiog? = m?

7
Dy e — a2 2 ()2 — 2 2 N2, s
Qij = 2¢i-qj = m; +mj (g — qj) =m; +mj (ri —m)% 4,5 €{1,2,..., M}, (83)

the conditions to have a Landau singularity in the physiegian are

det(Q) =0,
{xi>0, i=1,...,M. (84)

For M = N one has a leading singularity, otherwis@if < N this is a subleading singularity. If some
internal (external) particles are massless, as in the dasr-photon scattering, then somg; are zero,
and the above conditions can be easily checked. Howevé ifiternal particles are massive then it is
difficult to check these conditions explicitly, especialiyM is large. In this case, we can rewrite the
above conditions as follows

det(Q) =0,
{ Ty = det(QAjM)/det(QMM) >0, j=1,... , M -1, (85)

WhereQij is obtained from@ by discarding rowi and column; from Q. Note thatdet(QMM) =
d[det(Q)]/dQurar. I det(Qarar) = 0 then the second condition in (85) becomis(Q;n) = 0
with j = 1,... , M — 1. There may be cases, as we will encounter in section 9.4,entherLandau

determinantlet(Q) has a quadratic form. These special situations have to tdidthwith care.

The existence of a Landau singularity corresponds to ameégeor of Q with zero eigenvalue. In
general() hasN real eigenvalues,, ... , A\x. Consider the case whefehas only on€¢non-degenerate)
very small eigenvalug y < 1. To leading order

AN = Z—(l), a1 = AMAe...An_1 #0, ag = det(Q). (86)
With V. = {29,29,...,2%} the eigenvector corresponding ig;, we definev? = V - V. We will
assume thak; > 0fori=1,... ,Kand\; <Oforj=K+1,... N-1with0O< K <N 1.1t
can then be shown that i dimensions,

(_1)N€i7r(N—K—1)/2U W(N_D_l)/QP((N — D+ 1)/2)

TN
0 23D/2-N /(Z1)N-K-1g, (Anv2 — ie)(N=D+1)/2

(87)
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This result holds provided; # 0 andN — D 4+ 1 > 0. For the boxN =4, D = 4, ag — 0 anda; # 0
we get

o i (3—K) /2 )
0o = 4y/(—1)3-K det(Qq) — e
This shows thatT}) ;. is integrable but its square is not
In the caseV = 3 (the triangle),D = 4, it is possible to derive
_im(2—K)/2
3 ¢ v In(A3v? — ie) (89)

0 8 (—1)27K)\1)\2

T3 and its square are therefore integrable.

9.3 gg — bbH

The first example we study is the electroweak correctionspto— bbH [184] where the one-loop
amplitude squared, which is all that remains in the limitafilsshing bottom Yukawa coupling, develops
a Landau singularity which represents the rescatteringetdp pair and their decay intol& pair that
produces the Higgs throudiy W fusion. As we will see, in this example, introducing the waidif the
internal top andV particles smoothes the singularity. There is a leading hargingularity present in
the box diagram shown in Fig. 17 that occurs for some spedcifizes of the kinematic variables.

(. as)

<[~(]I)

Fig. 17: A box diagram contributing tgg — bbH that can develop a Landau singularity fafy > 2Myw and+/s > 2m,
i.e. all the four particles in the loop can be simultaneouwstyshell.

With g(p1)+9(p2) — b(p3)+b(pa)+H(ps), 5= (p1+p2)? s1= (p3+ps)? s2 = (patps)?,
and the on-shell condition§ = p3 = 0, p3 = p; = m? = 0, p? = M}, fixing s and My, the scalar
box integral is a function of two variables »

T(;l(sly 82) — DO(M12{7 07 S, Oa 51,52, MI%Va MI%V? m?, mt2) (90)
The kinematically allowed region is
Mégslgs, M%IiSSQSM%I—FS—Sl. (91)
S1

The reduced matrix5¥), which is equivalent in this case to ti¢ matrix for studying the Landau
singularity, is given by

1 2ME,—M%  mi+MZ —s: M2, +m?
2M32, 2Myymy 2 My
2MZ, — M3, 1 M2, +m? m?+M2, —s;

g _ 202 2Myymy My my g _ Qij 92
i 2 MEV_ M2 2 2 ) i T e ( )
J mi+My, —s1 w g 1 2mi—s J 2m;m;

2Ny my My 2m3 J
M‘%V—s—m? m?—f—M‘%V—sz 2m?—s 1
2Myymy 2Myy my 2m3
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The singularity corresponds @t(s(‘*)) = 0. The determinant is a quadratic functionsaf so when

s and all internal masses are fixed. The Landau determinamtiel and imaginary parts @t} are
displayed in Fig. 18 for/s = 353 GeV, My = 165 GeV, m; = 174 GeV, My = 80.3766 GeV.

We clearly see that the Landau determinant vanishes inkil@hase space and leads to regions of
instability exhibiting leading and lower-order Landauggiterities in the real and imaginary parts of
the scalar integral. To investigate the structure of thgudarities in more detail let us fix/s; =

det(S,)

O N whkhcoo N
Tt Vo Pl M T T

w
>

Fig. 18: The Landau determinant as a functionsgfand so (upper figure). The real and imaginary parts bf, as a function
of s; ands,.

\/2(m? + MVZV) ~ 271.06 GeV, so that the properties are studied for the single viriah The results
are shown in Fig. 19.

From Fig. 19 we see that there are four discontinuities infalnetion representing the real part
of the scalar integral in the variablg’s;. As sy increases we first encounter a discontinuity at the
normal threshold/s; = m; + My, = 254.38 GeV. This corresponds to the solution (for the Feynman
parametersy; 3 = 0 andxz4 > 0 of the Landau equations. The second discontinuity occutiseat
anomalous thresholg's; = 257.09 GeV of a reduced triangle diagram. This corresponds to theiso
xz = 0 andx; 24 > 0 of the Landau equations. The condition of vanishing deteamidet(S3) = 0 for
this triangle has two solutions

1
$2= 5o (M%I(m? + M) F My M} — 4AME, (m] — MV?V)> (93)
w
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Fig. 19: The imaginary, real parts oD, and the Landau determinant as functionsef

which gives,/sy = 257.09 GeV(inside of phase space) ap@l7.86 GeV(outside of phase space). We
can also check that the former value satisfies the sign dondit (85) while the latter does not. Note
that one of the conditions for this anomalous threshold tupm the physical region 8/ > 2Myy,
see Eq. (93). The same phenomenon happens for the thirdntlimaity at \/s2 = 259.58 GeV
which corresponds to the anomalous threshold of the redtigeé point function obtained from the
box diagram by contracting to a point the line. The last singular discontinuity is the leading Lan-
dau singularity. The conditiodet(Ss) = 0 for the box has two solutions which numerically corre-
spond to,/s; = 263.88 GeV or,/s; = 279.18 GeV. Both values are inside the phase space, see
Fig. 19. However after inspection of the corresponding signdition only,/s> = 263.88 GeV (with

x1 ~ 0.533186, x2 ~ 0.748618, x3 ~ 0.774941) qualifies as a Landau singularity/s; = 279.18 GeV
hasz; ~ —0.742921, x5 = —0.748618, x3 ~ 1.06537. The nature of the leading Landau singularity in
Fig. 19 can be extracted by using the general formula (88})h Wie input parameters given above, the
Landau matrix has only one positive eigenvalue at the le@psiimgular pointj.e. K = 1. The leading
singularity behaves as

; 1
Dgw _ (94)

N 16 M3, m?/det(Sy) — ic

When approaching the singularity from the leftt(Ss) > 0, the real part turns singular. When we
cross the leading singularity from the rightt(S;) < 0, the imaginary part of the singularity switches
on, while the real part vanishes. In this example, both théaed imaginary parts are singular because
det(Sy) changes sign when the leading singular point is crossed.

The instabilities of the integral and the singularities dwe to the unstable internal particles. The
problem can be remedied by introducing the finite width of Wieand top. As seen from Fig. 20,
introducing the finite width effect in the scalar box givesy@osth behaviour.

9.4 The six photon amplitude

The second example concerns a case with massless intertielgsainvolving massless external parti-
cles: the6-photon amplitude [185], see also [84, 86, 182]. Althoughghbalar integrals for th&photon
amplitude have a potential Landau singularity that lead®toe characteristic patterns of the amplitude,
direct calculations of the helicity amplitudes show thag #ingularity is tamed by the dynamics of the
gauge interaction in a somehow unexpected way. This is wedcgince we would not able, in this case,
to revert to the trick of introducing a width for the partisleThis said, introducing non-zero (internal)
masses, as would be fit for the couplings of the massless photmuld regulate a vanishing Landau
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Fig. 20: Effect of the combined width of th&, 'y and the topI" — ¢, to the real and imaginary part of the scalar function.

determinant, but would of course still pose a considerabiearical problem if the singularity from the
vanishing Landau determinant is not counterbalanced bgghreand gauge algebra.

To be able to see the cancellation at the level of the amg@itsadnly possible if one has very
compact analytical expressions for these amplitudes. tinvestigation the expressions for the ampli-
tudes [185] are based on the unitarity-cut methods and ade perticularly simple thanks to the fact that
the six-photon amplitude has no IR/UV divergences and normatterms. The six-photon amplitude was
calculated in three models: i) scal@# D, A" i) spinor QED: Agﬂ"mwn and iii) supersymmetric
QED N = 1: AY=1. The three amplitudedselar | AI"™" and AN=1 are in fact related through:

Ager‘mion _ _2Agcalar + Ajﬁ\/':l (95)
Full compact expressions for the amplitudes can be fountds][ The potential Landau singular-

ity in the 6-photon amplitude reveals itself in the so-called doubktguescattering configuration [182],
see Fig. 21.

p1

p3 Ps

Fig. 21: Double parton scattering configurationp , p4 are incoming photons witp; + 4 = 0, each splits into a fermion pair which
rescatters to give photon pait®2, ps); (p3, ps) at very small, vanishing, transverse momentum.

The Landau conditions read

det(Q) = (1355435 — S35526)° — 0 , 35,826 >0 , S135, 5435 < 0 (96)

wheres;;, = (pi + p; + pi)?, all thep;’s are taken as incoming. Note the specific naturd@f Q)
which has a quadratiform. This will lead to a double root (eigenvalue) at the silagity, or in other

words the derivative ofiet(() at the singularity is also vanishing. In fabtt((Q) is proportional to the
square of the Gram determinadtt(G). To wit

det(G) = —2s14(51355435 — 535526) < \/det(Q) (97)
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This property is due to the presence of many zeros, both fr@ekinematics of the external photons and
the masslessness of the internal lines.

How does the singularity of the scalar integral transpiréhatlevel of the amplitude? Let us turn to
the NMHV (———-+++) six-photon helicity amplitude and specialise to the kintes® of the Nagy
and Soper configuration [182]. We start from a fixed point iag#hspace in the centre of mass frame
p1 + pu = 0 with 7, along thez-axis:

{ ps = (—33.5,—15.9,—25.0) p3 = (11.0,13.2,22.0)

7 = (12.5,—15.3,-0.3) ¢ = (10.0,18.0,3.3) (%8)

One can generate new configurations by rotating the finad atadut thes-axis by an arbitrary anglé.
We can then study the behaviour of the amplitude in this patamlt is illuminating to rewritelet(Q)
in terms of this parameter for this particular configuration

det(Q) = (s14 k§)2 with k7 = p3s,, + (P354 cos 0 + pss - sin6)” (99)

wherepss; = p3i + psi, ¢ = x,y, z. The minimum value ok; is given byk:tmln p§5y.

The behaviour of the amplitude as a functiondofor this particular configuration is shown in
Fig. 22. The important conclusion to draw from Fig. 22 is tihatstructure of the amplitude, in particular
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Fig. 22: The NMHV amplitude as a function &fin the Nagy-Soper configuration in the case of QED (left) al agethe scalar andV = 1
SUSY(right). In the first panel we also show the dependenkg which is a good measure dbt(Q).

the peculiar dips, is well tracked klet (). Indeed the dips that show in the amplitude occur exactly at
the points wheréet(Q) is smallest. The dips occur @t~ 2.32 andf ~ 2.32 + 7 ~ 5.46. These values
can be derived from Eq. (99) wheke = k¢ min.

One can ask what would happen in a configuration whggg, and consequentlyet(@Q)) — 0? One
can arrive at thislet(QQ) — 0 configuration by perturbing the original kinematics in E§. 9

(11.0,13.2 + A, 22.0)

53 — ph = (—33.5,—15.9 — A, —25.0) B3 (100)
= (10.0,18.0 — A, 3.3)

7 — 1t =
P — Pl = (12.5,-153+ Ay, —0.3)  Pg — 1} =
The modulation is unchanged, such that the dips occur at the karagon ing. However nowA, can
be chosen such thaf i, = 0. This occurs forA,, = 1.05.

Figs. 23 show how the pattern of the amplitude, as far as thardiund the singularity &= 5.46
is concerned, evolves dSs, is varied from zero td.05 wheredet(Q) andk; i, vanish. It can be seen

5The correspondance between the kinematical conventioh&gy and Soper and the one used here are the following:
Nagy and Soper consider the reactigh(ps) +~v~ (p1) — v~ (=ps) + v (=p2) + 7" (=ps) + v~ (—ps) i.e. theirk;’s and
ourp; are such thatk; = P4, ko = P1, ks = —p2, ks = —Ps, ks = —DPe andkg = —p3 SO thatk, + ko = ks +ks+ ks + kg.
See [185] for more detalils.
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Fig. 23:The six-photon amplitude around the Landau singularityrabterised by) aroundd = 5.46 and for different values of the parameter
A, that gives a measure & ,in in spinor QED (left) and in\" = 1 susy QED (right).

that asdet(()) — 0 with increasing?,, the width of the dip decreases more and more so as to behave
as a sudden jump, with the oscillation pattern disappeamamgpletely forA, = 1.05. The numerators

of the six-photon amplitudes, reflecting the dynamics ofghege interaction, vanish fast enough as the
Landau singularity is approached. Therefore the singylagems to belynamically regulatedor the
three cases of the scalar, the fermion and the SUSY-amelitud

Itis also revealing to investigate how the apparent Landaguarity is approached from different
directions by considering a two-dimensional parametgasaf det(Q) and the kinematics.

We therefore modify the original Nagy-Soper parametansatuch as to generate a Landau sin-
gularity and add &; variable both along the andy direction to follow the approach to the singularity:

{ P37 = (=335 — ki, —15.9 — kyyy, —25.0)  p3 = (—12.5 + ky g, 15.3 + kyyy, 22.0) (101)

D5 = (12.5 + ki3, —15.3 + k¢, —0.3) D6 = (33.5 — ki,15.9 — k¢, 3.3)
Figs. 24 show the six-photon ampIitudxeiée’"mio"/jv:1 as functions of the two variablds , andk; .
Up to an overall rotation, the analytic structure of thesglétodes near the Landau singularityiat. =
k¢, = 0 can be modelled as

kiok 1
LrY — Zgin(20) (102)

Ag ~ —tzlty
6 kP, + k7, 2

wherek;, = ki cosa, key = kysina, ky = (k7, + k7,)1/2.

The amplitudes exhibit a valley and a ridge along mutuallppedicular axes crossing each other
atk;, = kiy = 0. The various profiles shown in Fig. 23 are nothing but crossiaes at fixedk;,, of
Fig 24. In particular, the profiles faf, = 1.05 correspond td:;, = 0. More generally, when both
ki, andk,, approach) simultaneouslyAs remains finite: the Landau singularity of the double parton
scattering type does not lead to a divergence/k? as would have been naively expected from a general

power counting argument [183, 186]. Yet the limiting valdeAy depends on the directiom along
which the origink; , = k;, = 0 is approached.

9.5 Conclusions

We foresee that in the calculations of multi-leg one-logpeisses the study of the Landau conditions will
bring very useful, if not crucial, information. More invégdtions of the properties of these singularities
need to be performed.
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Fig. 24: The six-photon amplitude in spinor QED (top) andNfi= 1 QED (bottom) around the Landau singularity

10. TENSOR ONE-LOOP INTEGRALS IN EXCEPTIONAL PHASE-SPACE R EGIONS?Y’

10.1 Introduction

At the LHC and ILC, many interesting processes involve mbemtfour external particles. A thorough
description of such processes requires the evaluationrefigstand electroweak radiative corrections
at least in next-to-leading order (NLO). The most compédapart in such calculations concerns the
numerically stable evaluation of the one-loop tensor iraksgof the virtual corrections.

For processes with up to four external particles the clasflassarino—\Veltman (PV) reduction
[157], which recursively reduces tensor to scalar integra sufficient in practically all cases. This
scheme, however, involves Gram determinants in the deraiorinrwhich spoil the numerical stability
if they become small. With up to four external particles thégppens only near the edge of phase space
(forward scattering, thresholds). With more than four exaéparticles, Gram determinants also vanish
within phase space, and methods are needed where Gram thetetsrcan be small but still non-zero. In
this context it should be noticed that the described prolmémverse Gram (and related) determinants
occurs inall methods that reduce loop diagrams or amplitudes to the betsig standard scalar integrals.
This, in particular, also applies to unitarity-based ortstrap approaches that work at the analytical (see
e.g. Ref. [122] and references therein) or numerical [8392L16, 174] level. These methods certainly
mitigate the problem of cancellations, but cannot avoidinpletely.

YContributed by: A. Denner, S. Dittmaier
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In this article we inspect two benchmark phase-space pthiatsare inspired from our calculation
of electroweak (EW)O(«) corrections toeTe™ — 4fermions [187, 188}8 One of the two points
involves a small Gram determinant, the other involves baall Gram and a small “modified Cayley
determinant” at the same time. Although of course the redbpmance of proposed solutions can be
only be found out in full applications, i.e. when integratilbop corrections to complicated processes
over the whole phase space, a selection of such benchmants [certainly a useful testground in the
development of loop techniques.

Several solutions to the problem of numerical instabgitieie to inverse Gram determinants have
been proposed in recent years, but not many of them have iptbeg performance in complicated
applications yet. For references and descriptions of sorathads alternative to ours, we refer to
Refs. [193,194].

10.2 Tensor coefficients and their reduction

We consistently follow the notations and conventions fal@cand tensor one-loop integrals introduced
in Refs. [193, 195]. Here we briefly repeat the conventiomgHpoint integrals as required in the con-
sidered examples. Tensor 4-point integrals of r&dre defined as

ot 4—D K1 ... gHP .
DFiE = ( iHTI')Q /qu m’ Nk = (q +pk)2 - mz + 107 Po = 07 (103)

whereD is the number of space—time dimensions arithe reference scale of dimensionional regular-
ization. The tensor integrals are decomposed into coviarafollows,

3 3
D' = > piDy,  D"= > plp}Dii, + g" Do,

i1=1 i1,92=1

3 3
D= N el Diinis + > (9P, + 7P + 97pl) Doois (104)

i1,i2,i3=1 i1=1

and so on for higher rank. Up to rank 3, and only those are densil below, 4-point tensor integrals are
UV finite. The kinematical arguments of the coefficiefts, which comprise all scalar produgtgp;
and internal masses,,, are written as

D = D(p%7 (PZ _p1)27 (p3 _p2)27p§7p%7 (p3 - p1)27m%7 m%u mgu mg) (105)

Conventional PV reduction [157] expresses the réh-point coefficients in terms of lower-rank 4- and
3-point coefficients. In each stdp— (P — 1) the inverse of the Gram matrix

2pip1 2p1p2 2p1p3
Z =\ 2pap1 2p2p2 2pop3 (106)
2p3p1 2psp2 2psps3

occurs, which causes the above-mentioned numerical prsbiiethe determinant”| becomes small.
The highest negative power @f| occurs in the calculation of tensor coefficiers, ;, .. without “0”
indices, rendering them numerically the most delicateh&nfollowing we also need the matrix

2mg | f1 f2 [
x=| L1, | fmsemiend (107)
/s

8Meanwhile the same methods have been successfully appldd® EW and QCD corrections to the Higgs deddy—
WW/ZZ — 4f [189,190] and to Higgs production via vector-boson fusibtha LHC [191, 192].
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The vanishing of the modified Cayley determind#t| corresponds to necessary conditions for true
(Landau) singularities in a Feynman diagram. The minoes determinants of submatrices where row
i and columnj are discarded) of the matrices and X, respectively, are called;; and X;; in the
following.

10.3 The “DD” approach

One-loop tensor integrals can be naturally grouped integtleategories, which we have treated in com-
pletely different ways:

() For 1- and 2-point integral®f arbitrary tensor rank, numerically stable analyticgpmssions
are presented in Ref. [193] (see also Ref. [157]).

(i) For 3- and 4-point tensor integral$®V reduction [157] is applied for “regular” phase-space
points where Gram determinants are not too small. For thairéng problematic cases special reduction
techniques have been developed [193].

One of the techniques replaces the standard scalar integeaspecific tensor coefficient that can
be safely evaluated numerically and reduces the remaieingpt coefficients as well as the standard
scalar integral to the new basis integrals. In this schen@angerous inverse Gram determinants occur,
but inverse modified Cayley determinants instead. We natettie procedure is related to the fully
numerical method described in Ref. [196].

In a second class of techniques, the tensor coefficientderagively deduced up to terms that
are systematically suppressed by small Gram or other kitieah@eterminants in specific kinematical
configurations. The numerical accuracy can be systemigticaproved upon including higher tensor
ranks. In our previous applications the highest relevargdgerank was improved only by one additional
iteration; in the results shown below we employ an new imgetation of the methods where more than
ten additional iterations are included if relevant. A samildea, where tensor coefficients are iteratively
determined from higher-rank tensors has been describedfifB7] for the massless case.

(i) For 5- and 6-point integralsdirect reductions to 5- and 4-point integrals, respebtieee pos-
sible owing to the four-dimensionality of space-time. Fealar integrals such a reduction was already
derived in the 1960s [198]. In Refs. [193, 195] we follow lwadly the same strategy to reduce tensor
integrals, which has the advantage that no inverse Grannaietnts appear in the reduction. Instead
modified Cayley determinants occur in the denominator, beidi@ not find numerical problems with
these factors. A reduction similar to ours has been propiosRéf. [175].

We would like to stress two important features of our apphoac

(i) The methods are valid for massive and massless casedoithalas given in Refs. [193,195]
are valid without modifications if IR divergences are reguakd with mass parameters or dimension-
ally.1® Finite masses can be either real or complex.

(if) The in/out structure of the methods is the same as foventional PV reduction, i.e. no specific
algebraic manipulations are needed in applications. Thexgthe whole method can be (and in fact is)
organized as a numerical library for scalar integrals anddecoefficients.

We conclude this overview with some comments resulting foamexperience collected in the
treatment of a fulk — 4 scattering reaction.

(i) For a specific point in a multi-particle (multi-parametphase space it is highly non-trivial to
figure out which of the various methods is the most preciseedims hopeless to split the phase space
into regions that are dedicated to a given method. Thergfageestimate the accuracy for the different
methods at each phase-space point and take the variantgimgrttie highest precision. The accuracy

19For the method of Ref. [195], this has been shown in Ref. [199]
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of the PV method is valued by checking symmetries and PVioglat and by estimating cancellations.

In the expansion approach, we estimate the number of valitsdiased on the expected accuracy of
the expansions and possible numerical cancellations é¢far evaluation of the coefficients. In the

seminumerical approach, the integration error is propatd the tensor coefficients, together with an
estimate of possible cancellations.

(i) In a complicated phase space it may happen that noneeafahous methods is perfect or good
in some exceptional situations. Usually the corresponeimgts do not significantly contribute to cross
sections. This issue can only be fathomed in actual apfitat To be on the safe side, we employ the
two independent “rescue systems” with different advardagel limitations.

(iii) In view of this, figures as shown below are nice illusioas, but should always be taken with
a grain of salt. No matter how many of such figures are shovay, ill never be exhaustive, so that no
guantitative conclusions on the overall precision of mdthcan be drawn.

10.4 Two benchmark phase-space points

In the following two examples of exceptional phase-spaagigarations are consideréf: one with
small Gram determinanf|, another with bothZ| and|X| small. These two cases were already qual-
itatively illustrated in Ref. [200], but without providingxplicit numbers. We also note that a complex
Z-boson mass was used there. Here we switch to a real-valoesZ to make it easier for other groups to
compare with our numbers. For the sake of brevity, no resfiise seminumerical method are included
below; such results are illustrated in Ref. [200].

10.4.1 A case with a small Gram determinant

Figure 25 defines the first benchmark point for a 4-point fiomcin which the Gram determinanf |
becomes small. We compare results of PV reduction with testfithe expansion in the small Gram
determinant as described in Section 5.4 of Ref. [193]. Iruihyger half of the figure a hexagon diagram
is shown that contains a box subdiagram with the considaretratical configuration. The structural
diagram illustrates the kinematical assignment with mdé&masses and squared external momenta given
at the respective lines. The invariants near the arcs argqiiires of the sum of momenta flowing into
the two neighbouring external lines. The explicit valuestef masses and invariants are given in the
figure. As indicated there, the Gram determinant vanishéseifinvariantt_; approaches the critical
valuet.;, corresponding to an inner phase-space point. In the pfdigo 25 we show results on a
few tensor coefficients wheny is varied while keeping all other invariants fixed. The vaoia in ¢ 3

is translated into a variation of the dimensionless vaeabk ¢ 5/t.it — 1 where the exceptional point
with | Z| = 0 corresponds te = 0.

It is clearly seen in the plot on the I.h.s. that the tensoffmients calculated with PV reduction
show numerical instabilities for small while the results of the expansion method behave smoaokhky.
PV instabilities increase with increasing tensor rank. ploe on the r.h.s. shows the relative difference
between the PV results and the corresponding “best” piedi&t which are either obtained with the
PV or the expansion method. With decreasinthis difference rises because of the PV instabilities,
and for a sufficiently high the difference becomes zero (and falls out of the plot rarfge)ause PV
reduction promises better accuracy there. It is essentisté a broad region inwhere the difference
is small for each tensor coefficient. This region corresgdondhe overlap in which both PV reduction
and the expansion method are trustworthy, the differenbectang the uncertainty of the less precise
result. The plot suggests that both methods should be pragikin a relative accuracy of aboi®—*
for the considered coefficients which go up to rank 3. As alyementioned for the: values of the
shown points, the error estimate of the expansion promistsriprecision, otherwise (for largej PV

20\We have to restrict the set of numerical results to a few s&tetensor coefficients; more results can be found under
http://wwt h. nppru. npg. de/ menber s/ di ttmir/tensints/benchmarks. htm .
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Fig. 25: A typical example for 4-point integrals with smgi| (z — 0). The full diagram and the relevant subdiagram are
given above; absolute predictions (in arbitrary units)§ome tensor coefficients, relative deviations from PV r&dacand
the kinematic specifications are shown below. The preciserkatical assignment .. (t.3, Sou, 0,0, tou, Suu, 0,0, 0, MZ).

T Do[107° GeV ] Di[107° GeV ]
PV 10°T —0.67882897158103 +16.0180488033754  1.7886414145138 — i 1.2549864424823
GE —0.67882877418780 +16.0180477715020  1.7886420559893 — i1.2549896774206
PV 1077 —0.83672359694266 + 16.2756930854749  1.9379452063976 — i 1.3078118992970
GE —0.83672359694268 + 16.2756930854749  1.9379452063946 — i1.3078118992992
PV 1077 —0.83844622485772 +16.2784151968393  1.9395624008169 — i 1.3083604510334
GE —0.83844622485773 +16.2784151968392  1.9395624003839 — i1.3083604516556
PV 1077 —0.83846346674121 + 16.2784424334401  1.9395786154611 — 1 1.3083659591802
GE —0.83846346674123 + 16.2784424334401  1.9395785857818 — i1.3083659392409

T D11[1079 GeV ™Y Di11[107° GeV ]
PV 10° T —1.1897035560343 + 10.24556726948834  0.78386334534494 + 10.015037069443873
GE —1.1897015303789 + 10.24555744219672  0.78386954016210 + i0.015008250147071
PV 1077 —1.2896489514112 +10.24411794128315 0.85127803054027 + 10.030174795680439
GE —1.2896489629378 +10.24411794473416  0.85127066041158 + 10.030177001227644
PV 1077 —1.2906894073746 + 10.24417445247670  3.6185733047156 + 15.5143276069563
GE —1.2907326083248 + 10.24408881850424  0.85200224111245 + 10.030350914400978
PV 1077 —1.3307540613183 —10.18321620694255  —256227.63578209 — i 2736466.9255631
GE —1.2907434539101 + 10.24408852556218  0.85200956315901 + i 0.030352656048116

Table 4: Numerical results corresponding to Fig. 25.
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Fig. 26: An example for 4-point integrals with bgth| and| X | small ¢z — 0). Details as in Fig. 25. The precise kinematical
assignment i (m2, s,.5,0, 8, Suvu, Spwd, 0,m2, 0, M7).

T Do[1078 GeV ] D1[1078 GeV ]
PV 102 8.3606217876308 —13.0637590178519  —3.6746526331008 + 10.92370985809148
GCE 8.3605751148559 — 13.0637472109275  —3.6746146470383 + 10.92369999581248
PV 1077  8.4400974376543 — 13.0949777817064  —3.7124176130452 + 10.93444204630892
GCE 8.4400974331251 — 13.0949777805604  —3.7124176082911 + i0.93444204697694
PV 1077 8.4481162422241 —13.0981290348801 —3.7162301181594 + 10.93552679201780
GCE 8.4481162422054 — 13.0981290348524  —3.7162304755308 + 10.93552678170043
PV 107 8.4489188416187 — 13.0984444568680 —3.7165517842462 + 10.93563927582254
GCE 8.4489188413614 — i3.0984444566400  —3.7166121290025 + 10.93563537143079

x Dy [10_8 GeV_4] Dq1q [10_8 GGV_4]
PV 1072 2.2302468112479 — 10.53202142768691 —1.5782872266397 + 10.38602980478054
GCE 2.2297642816234 — 10.53189620367287  —1.5778873843217 + 10.38592377802513
PV 107% 2.2539023067993 — 10.53805321575089 —1.5955732338585 + 10.38916806038788
GCE 2.2539023467387 — 10.53805185525506  —1.5951976445129 4 10.39030849156415
PV 10°% 2.2578016118662 — 10.53856637974433  19.161260651686 + i 1.6687070921546
GCE 2.2562925399069 — 10.53866164959083  —1.5969069247380 + 10.39074113712771
PV 107 1.8810483898149 —i0.93548431089474  492069.51092499 + 167693.244541619
GCE 2.2565317562670 — 10.53872268382964  —1.5970779937221 + 10.39078443860164

Table 5: Numerical results corresponding to Fig. 26.
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reduction seems to be better. Table 4 provides explicit rrsfor the considered tensor coefficients at
somex values. These numbers could serve as a benchmark also é&smo#thods.

We recall that the expansion for smedl| is limited to the case whet¥,; andZy, are not too small
for at least one set of indicgsk, [. If all Xo; are small, thenX| is small, too. Such a case is considered
in the next subsection. The case in whichz|] are small is elaborated in Section 5.6 of Ref. [193].

10.4.2 A case with small Gram and modified Cayley determsnant

Figure 26 defines the second benchmark point for a 4-poimtiemin which both determinantg/| and

| X | become small. Here we compare results of PV reduction withltgof a simultaneous expansion in
|Z| and| X | as described in Section 5.5 of Ref. [193]. In the upper hatheffigure a pentagon diagram
is shown that contains a box subdiagram with the considerezhiatical configuration. The structural
diagram again illustrates the kinematical situation ah@revious case and the explicit values of the
masses and invariants are given in the figure. The u-quark mgss kept only as regulator of the
mass singularity, i.e. it is only kept non-zero in the lotfar In m,,, but set to zero otherwise. The
two determinantsZ| and|X| vanish if the two conditions,;q = s ands,;, = s, are fulfilled. We
explore the neighbourhood of this exceptional configuratia the specific line parametrized by the
dimensionless variable = s,5q4/s — 1 = supu/5u0 — 1, While keeping the internal masses and the
squares of the external momenta fixed.

The plot on the I.h.s. again illustrates the instabilitiesdmallz in the PV reduction that become
more serious for higher tensor ranks, while the results efetkpansion method behave smoothly. The
relative difference between the PV and the correspondiegt*prediction is shown on the r.h.s., re-
vealing the expected increase for— 0. For a sufficiently highe the difference becomes zero, because
PV reduction is more accurate than the expansion. In thdagveegion both methods should be pre-
cise within a relative accuracy of abol@—° for the considered coefficients. Table 5 provides explicit
numbers for the considered tensor coefficients at sowvadues.

The expansion method fails if either &l,; or all Xij are small. Possible treatments of these
exceptional cases are also described in Ref. [193].
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11. SINGULARITIES IN ONE-LOOP AMPLITUDES FROM THE POINT OF V IEW OF RE-
DUCTION METHODS 21

11.1 Introduction

Obtaining radiative corrections requires the evaluatidonap Feynman integrals. The simplest, but also
the most important, loop integrals are one-loop Feynmaegnals. Considerable progress has recently
been made in developing various approaches for calculatiegloop integrals. Today, at least in prin-
ciple, it is possible to calculate any of them to arbitrarggision no matter how many external legs
the corresponding Feynman diagram has. Unfortunatelypitgesuge development, for a practitioner,
the calculation of amplitudes up to one-loop contributianstill a difficult task. With the increasing
complexity of the process under consideration, the numb&egnman diagrams whose contributions
have to be obtained rises very quickly, as does the complekithe corresponding one-loop Feynman
integrals which have to be calculated. Therefore, we areefbto automatize our calculations. Use of
available automatized algorithms helps tremendouslytl®imoment when calculations of physically
relevant processes will demand for practical use unacblptamounts of computer time and memory

2Contributed by: G. Duplatic
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is not far away. To surpass this problem it is necessary th foonew approaches for calculating one-
loop amplitudes, but also to implement algorithms in a maa@iputer friendly” way, which means less
computer algebra and more numerics. Unfortunately, nurakyioriented codes increase our chances
to face numerical instabilities. This problem is usuallyweected with the presence of singularities in
the functions under consideration. It is known that looprigagn integrals have rich singularity struc-
tures. For that reason, it is important to summarize all th&nown about the problem as well as to
share experience from previously performed calculatidresneplitudes. Since reduction to the set of
basic scalar Feynman integrals is at the heart of most metlowdalculating Feynman integrals, here
we discuss singularities from that point of view. Despitifedent approaches which can be taken, the
final decomposition of the given Feynman integral, in teringredefined set of basic integrals, should
be unique. Therefore, any approach taken to discuss thalarity structure of the final decomposition
is equally valid. Here the reduction method based on Refd.,[143,201, 202] is used.

11.2 Definitions and reduction method
In order to obtain one-loop amplitudes, integrals of théofeing type are required,

dP1 Lyy - -1
IN D, Vi = 2 2D/2/ M1 up . 108
- MP( tid) (1) (2m)P Hf\il [(l +7)? — sz + ie] Vi ( )

dP1 1
2m)P I, [0+ 7)2 — m2 4 1]

(D)) = (WD / : (109)

The integrall));. ,, (I{) is arankP tensor (scalar) one-loal-point Feynman integral i-dimensi-
onal space-time, whetg are powers of propagators ahé r; (m;) is the momentum (mass) of particle
propagating along the corresponding internal line. The mmom! is the loop momentum and the
are linear combinations of external momenta. The sgatethe usual dimensional regularization scale
and the quantitye (e > 0) represents an infinitesimal imaginary part which ensuaesality and, after
the integration, determines the correct sign of the imagipart of the logarithms and dilogarithms. Itis
customary to choose the loop momentum in such a way that otie @homenta; vanishes. However,
for general considerations, it is convenient to keep thersgtry of the integral with respect to the indices
1,---,N.

It can be shown that every tensor one-loop integral can beeegpd as a linear combination of
scalar one-loop integrals by the following equation,

' . N e Vi + js
IL]X"-#P (D; {wi}) = Z {[g]k[rl]ﬁ o [TN]]N}MMMP (4(62)>k [H F(F(:_‘)] )
ki1 i 20 i=1 !
2k+25;=P

x I (D +2(P — k); {vi + ji}), (110)

where{[g]*[r1]7* - - - [rN]"N } 4y TEPrESENtS @ SYmmetric (with respecto- - - 1p) combination of
tensors, each term of which is composed ohetric tensors angi momentar;. Therefore, the problem
of calculating tensor integrals has been reduced to theledicn of the general scalar integral, which is
the most convenient to evaluate from the following représion,

P (SEiv-Dj2)
[T, D)

IéV(D, {Vz}) = (4;)2(47{'M2)2D/2 (_1)2?;1%'

D/2—-N v,

1/ N N N N
x /0 (dei?/fl) y (Z Yi — 1) = iy i —r)? > yim? —ie | . (111)
=1 i=1 i=1

i,j=1
1<j
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Direct evaluation of the general scalar integral repressamton-trivial problem. However, with the help
of the recursion relations, the problem can be simplifiedhangense that the calculation of the original
scalar integral can be reduced to the calculation of a certamber of simpler basic integrals. All

relevant recursion relations for scalar integrals can htemrin matrix notation as

0 1 1 e 1 (D =1 =330, v (Ds {vi})

1 Ri1+2ie Ryg+2ie -+ Ry +2ie vy IéV(D; {vi+6i1})

1 Rig+2ie Raop+2ie --- Ron+2ie |. vy IV (D; {vi + 0ia}) =
1 Rin+2ie Ron+2ie - - Ry + 2ie vn IV (D;{vi + 6in'})

—(4mp®) T (D = 23 {wi})
—(4rp®) L IN(D — 2, {vi — 611 })
— | —@m®) T (D =2 {vi = 0i2}) | (112)

() I (D — 2 (s — G })

whereR;; = (r; — r;)> —m? — m3. In the following we introduce the notatid for the (N + 1) x

(N + 1) matrix in Eq. (112). Making use of relations which follow froEq.(112), each scalar integral
I¥(D; {v;}) can be represented as a linear combination of intedfal®’; {1}) and integrals with the
number of propagators which is less than(it has be understood thdf' (D; {---v;,_1,0, 41 })

= 1V"YD;{---vi_1,v41---}) ). For the dimensiorD’, one usually chooses + 2¢, wherec is
the infinitesimal parameter regulating the divergences siycessively applying the above mentioned
procedure to the remaining less-thAnRpoint integrals it is at the end possible to express thegnate
IV (D;{v;}) as a linear combination of integral§(D’; {1}), k = 1,... , N. Itis convenient to write
these basic integrals as

1'(D3{1}) = o PP 2T (N = D'f2) (-1
N D'/2—N
/ dez <Z Yi — 1) 5 Z yl 1] + 216 9 (113)
i=1 i,j=1

where the properties of thiefunction were used.

11.3 Singularities

The necessary conditions for Feynman integrals to haveikinties are given by the Landau equations.
In the integral representations given by Eqgs. (111) and)(1h8 singularity conditions [183] are given

by

N
> v (Rij + 2ie)y; =0 (114)
ij=1
and
N
either y; =0 or Z (Ri; + 2ie)y; = 0 for eachi. (115)
j=1

Notice that condition (114) is automatically satisfied wieemditions (115) are. The singularity of the
given Feynman integral corresponding tomalk~ 0 is called thdeading singularityof the integral, while
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those corresponding to some = 0 are calledower-order singularitiesof the integral. Lower-order
singularities are leading singularities of integrals véhall propagators associated with vanishipg
have been omitted. In the language of Feynman diagramsémislates as contraction to a point of all
lines associated with; = 0.

Finding the general solution of the Landau equations istnieial task. Here we consider only real
singularities. Real singularities are those occurringéal values of the invariantg;; on the physical
sheet. Notice that these real values of the invariants doetw#ssarily correspond to a physically possible
kinematical configuration.

Due to presence of the, no singularity appears along the real contour of integraith the para-
metric space in Egs. (111) and (113). It should be underdtuatdsingularities appear only in the limit

ie — 0.

In the previous section, it was described how to expresslitrany Feynman integral as a linear
combination of the basic scalar integrals. The questicsearif all singularities of the starting integral
correspond to singularities of the basic scalar integralsome of them correspond to singularities of
coefficients of the decomposition. To answer that quesiias, enough to check ife appears in de-
nominators of the coefficients. That is, singularities appanly in the limitie — 0 and if some of
the coefficients diverge independently of that limit, thke torresponding singularity is artificial in the
sense that it is not a singularity of the starting Feynmaegral. Consequently, such a divergence should
cancel in sum of all terms in the decomposition.

The simplest way to see whénappears in denominators is to invert Eq. (112) by multipdyiin
by inverse ofSy . The resulting equation is

(D= 1=, v)I(D; {v})

1§/ (D; {vi + 6 2)-1
v I (D {vi + di }) _ Um) (116)
: DetSy]
UN IéV(D; {Z/Z' + 6iN})
Det{Ry| — 2ie DetlSy] S s (=Nl V(D —2;{v})
—Si? S22 s (=1)NH8 g2 V(D —2;{vi — 61 })
(_1)N+QS]1VN+1 (—1)N+3S]2\7N+1 (_1)2N+QS]J\\[7+1N+1 I(])V(D—Q;{I/i—(si]v})

Wheresjvj is minor of S obtained by removingth row andjth column, andRy is an N x N matrix
with elements equal t&®;;. The matrixRy is sometimes called modified Cayley matrix and its deter-
minant the modified Cayley determinant. All minors appegimEq. (116) as well as Dgiy]| areie
independent. In all that determinants the first row or colwan be simply used to remove completely
theie dependance. Therefore, only the recursion relation faligvirom the first row of Eq. (116) will
have anie dependent coefficient. From the form of that relation itdals that real singularities can
appear in the coefficients of decomposition only if relasiar that type are used during reduction to
increase dimension of integrals. In that case, a singuleaih appear when Diéty] = 0. As expected,
the singularity is related to the same matrix which appeatsandau equations (114) and (115).

What happens if we calculate the integral exactly for kintcahvariables and masses for which
Det{ Ry] vanishes? In that case the lint— 0 should produce a divergence. But, from the beginning,
dimensional regularization was introduced exactly to éwaiplicit appearance of divergences. Hence,
the limitie — 0 can be applied and divergences appear in the form of powdrgoft follows that the
term DefR | — 2ie Det[Sn| vanishes and the first row from Eq. (116) can be used to redhec€point
integral to a linear combination ¢fV — 1)-point integrals.

To complete the discussion, it is necessary to comment onrbdwction works for vanishing
DetlSn|. Let us first express Dgfy] in a better known form. By subtracting the last column from th
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second, third, .., and Nth column, and then the last row from the second, third, and Nth row,
Det[Sy]| is given by

DetSy] = —Det[-2(r; — ry) - (r; — )],  dj=1,...,N 1. (117)

The determinant on the right hand side of Eq. (117) is knowth@$ram determinant. If Dgfy ], i.e.
the Gram determinant, vanishes, then the rows (columng)eoimatrix in Eq. (112) should be linearly
dependent. That is, there are real constarid§ z1, ... , zy, not all of them equal zero, which satisfy
the equation

0 1 1 e 1 -C 0
1 Ry1+42ie Ryg+2ie --- Ryy + 2ie 21 0
1 Rio+2ie Roo+2ie --- Roy + 2ie . 29 _ 0 | (118)
1 Rin+2ie Ron+2ie --- Ryny+ 2ie ZN 0
To see that the constarts”, z4, ..., zx should be real, just remove the completelependance from
the system in Eq. (118) by subtracting the equation from tiseriow multiplied by2ie from equations
in all other rows. After multiplying Eq. (112) by rO\(v —C 2z 2z -+ 2N ) the following relation
emerges,
N
CI(D =2 {v}) = > 2 Ig (D — 2;{vi — 6i;}). (119)
7j=1

Itis easy to see that by using above relation it is alwaysiplest reduce relevanV-point scalar integral
to a linear combination oV — 1-point scalar integrals. For details see [143].

From the considerations above, we can conclude that vagjsifithe Gram determinant is not
related to the singularities of Feynman integrals. It is ént@nt to point out that the situation is not
so simple in the case of diagrams with more than one loop. efH@ram determinants are related to
so-calledsecond-type singularities

11.4 Practice and problems

In practice we deal with 4-dimensional Minkowski space. Amrediate consequence of this is that,
for all integrals withN' > 5, DefSy| vanishes due to the linear dependence of the vectcaad all
integrals withN' > 5 can be reduced to the integrals with< 5. In view of what has been said above,
all one-loop integrals are expressible in terms of the iratisgy (4 + 2¢; {1}) with nonvanishing Dés}]
and DefRy], wherek = 1,... , 5. Infact, for practical calculations, also the 5-point loasialar integral
is reducible. That is because we are interested in calouktip toO(c). Details can be found in the
literature [140,142,202].

For most practical calculations the starting Feynman natisgpbtained from Feynman diagrams by
using Feynman rules aredn-2¢ dimensions and with; = 1. In the next step, tensor decomposition, Eq.
(120), will produce scalar integrals with higher dimensi@md powers of propagators. By successively
using all recursion relations following from Eq. (116), ept the one coming from the first row, in the
cases of nonvanishing Gram determinants and recursiatioreeollowing from Eqgs. (118) and (119)
in the cases of vanishing Gram determinants, it is posskexpress an arbitrary Feynman integral
as a linear combination of integral§(2n + 2¢; {1}) with nonvanishing Dés;,] and DefR;], where
k = 1,...,5. The possible values for parametedepend on kinematics involved. If the kinematics
is such that during reduction no case appears where theardiisin Eqgs. (118) and (119) vanishes,
the parameter is an integer greater than 1. Now, the recursion from therinstof Eq. (116) can be
successively used to lower all dimensions dowd te 2. Since in the above procedure that relation
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was never used to increase dimension, from what has beeimddiel previous section, it follows that
all singularities are in basic scalar integrals and divecgs appearing in coefficients should cancel in
the sum. The cases with vanishiGgappear regularly when dealing with diagrams containingressr
external lines, i.e. for exceptional kinematics.

Assuming the situation described in the previous paragmaplny Gram determinants to different
powers will appear in denominators of the coefficients whearhitrary Feynman integral is decomposed
into the basic integrals. The real problem in practice ismige has to calculate in a kinematical region
where some of those determinants are small. Since vanisiiithge Gram determinant does not corre-
spond to a singularity, one faces cancellation of big nusilaed consequently numerical instabilities.
In principle, if one is using methods where all Feynman irdégare expressed as linear combinations
of basic integrals, this problem is unavoidable no mattevhich framework coefficients are calculated.
That is because the decomposition into the basic integraisique. However, there are some hints from
experience as to where one should look to soften this prablEne main guideline is to try to avoid
separate calculation of diagrams contributing to the meaeder consideration. Namely, powers of
determinants in denominators tend to be smaller if a grougiagirams (for example, a gauge invariant
group) is calculated together. Additionally, one has toalseymmetries of the basic integrals to reduce
the basic set as much as possible. Of course, at the end, toagetprecision, it is always necessary
to make an expansion around a point where the Gram determiaaishes. However, if calculating
in the neighborhood of the point where both Gram and Caylégrdenants vanish simultaneously, the
expansion is problematic because the decomposition istabgtic at that point. One can hope that such
regions will not give sizable contribution to calculated/ptcal quantities.

11.5 Conclusion

Vanishing of various Gram and modified Cayley determinarlisalways produce numerical instabili-
ties if reduction methods are used to perform the calcuiafidhe instabilities can be softened by using
various clever approaches but the question remains, veitltlork for all practical cases? One can also
doubt if reduction to basic integrals is the optimal applocperform calculations which, due to their
complexity, become more and more numerically oriented. b&¢agsome kind of direct numerical inte-
gration of the Feynman integrals is more efficient. Surely iha more natural approach for numerical
calculations.
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CROSS SECTIONS

12. TUNED COMPARISON OF QCD CORRECTIONS TO pp — WW 4jet+X AT THE
LHC 2

12.1 Introduction

The complicated hadron collider environment of the LHC iszginot only sufficiently precise predic-

tions for the expected signals, but also reliable ratesdorlicated background reactions, especially for
those that cannot be entirely measured from data. Among lsackground processes, several involve
three, four, or even more particles in the final state, randehe necessary next-to-leading-order (NLO)

2Contributed by: T. Binoth, J. Campbell, S. Dittmaier, R.Kli<€ J.-P. Guillet, S. Kallweit, S. Karg, N. Kauer, G. San-
guinetti, P. Uwer, G. Zanderighi
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calculations in QCD technically challenging. At the prawsd_es Houches workshop this problem lead
to the creation of a list of calculations that are a priordy fHC analyses, the so called "experimenters’
wishlist for NLO calculations” [6,194]. The procegs — W TW ~+jet+X made it to the top of this
list.

The process of WW+jet production is an important source &mkiground to the production of a
Higgs boson that subsequently decays into a W-boson paérenddditional jet activity might arise from
the production [203]. WWH+jet production delivers also i@ background to new-physics searches,
such as the search for supersymmetric particles, becausptohs and missing transverse momentum
from the W decays. Last, but not least, the process is irtegas its own right, since W-pair production
processes enable a direct precise analysis of the noraalggiige-boson self-interactions, and a large
fraction of W pairs will show up with additional jet activigt the LHC.

First results on the calculation of NLO QCD corrections to W&t production have been pre-
sented by two groups in Refs. [204, 205]. A third calculatienn progress [206]. In the following
the key features of these three independent calculatiendescribed and results of an ongoing tuned
comparison are presented.

12.2 Descriptions of the various calculations

At leading order (LO), hadronic WW+jet production receivesitributions from the partonic processes
qqg — WTW~—g,q9 — WTWq, andgg — WTW g, whereq stands for up- or down-type quarks.
All three channels are related by crossing symmetry.

The virtual corrections modify the partonic processes #ratalready present at LO. At NLO
these corrections are induced by self-energy, vertex, Hgo(nt), and pentagon (5-point) corrections,
the latter being the most complicated loop diagrams. Aparbfan efficient handling of the huge amount
of algebra, the most subtle point certainly is the numesicsthble evaluation of the numerous tensor
loop integrals, in particular in the vicinity of exceptidnzhase-space points. The three calculations
described below employ completely different loop methd&eme of them are already briefly reviewed
in Ref. [194], where more details on problems in multi-legpcacalculations and brief descriptions of
proposed solutions can be found.

The real corrections are induced by the large variety of ggses that result from crossing any
pair of QCD partons i) — WW qggg and0 — W+W ~qqq'q into the initial state. Here the
main complication in the evaluation is connected to an effitphase-space integration with a proper
separation of soft and collinear singularities. For theasafion of singularities the three calculations
all employ the subtraction method [207] using the dipoletisadiion formalism of Catani and Seymour
[165].

The calculation of DKU [204]

This calculation is actually based on two completely ingej@nt evaluations of the virtual and real cor-
rections. The W bosons are taken to be on shell, but the semultross sections presented in Ref. [204]
do not depend on the details of the W decays.

Both evaluations of loop diagrams start with an amplitudeegation byFeynArts using the two
independent versions 1.0 [208] and 3.2 [209]. One of theutations essentially follows the same
strategy already applied to the related processeasidfi210] andtt+jet [211] production. Here the
amplitudes are further processed with in-holdathematicaoutines, which automatically create an
output inFortran The IR (soft and collinear) singularities are treated imeisional regularization and
analytically separated from the finite remainder as deedribh Refs. [199, 210]. The pentagon tensor
integrals are directly reduced to box integrals followingfH195]. Box and lower-point integrals are
reducedh la Passarino—Veltman [157] to scalar integrals, whicleaher calculated analytically or using
the results of Refs. [138,212,213]. The second loop cdiculas based orFormCalc5.2 [4], which
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automatically produceBortrancode. The reduction of tensor to scalar integrals is donke thiet help of
the LoopToolslibrary [4], which also employs the method of Ref. [195] fbet5-point tensor integrals,
Passarino—\Veltman [157] reduction for the lower-pointstas, and thé=F package [214, 215] for the
evaluation of regular scalar integrals. The dimensionadtyularized soft or collinear singular 3- and
4-point integrals had to be added to this library.

One calculation of the real corrections employs analytiesallts for helicity amplitudes obtained
in a spinor formalism. The phase-space integration is pesd by a multi-channel Monte Carlo integra-
tor [216] with weight optimization [217] written il€++ The results for cross sections with two resolved
hard jets have been checked against results obtainedMifiizard1.50 [218] andSherpal.0.8 [219].
Details on this part of the calculation can be found in ReRO2 The second evaluation of the real
corrections is based on scattering amplitudes calculatbdMadgrapH148] generated code. The code
has been modified to allow for a non-diagonal quark mixingrinand the extraction of the required
colour and spin structure. The latter enter the evaluatfdhevdipoles in the Catani-Seymour subtrac-
tion method. The evaluation of the individual dipoles wasfq@ened using aC++ library developed
during the calculation of the NLO corrections fiar-jet [211]. For the phase-space integration a simple
mapping has been used where the phase space is generateddegmential splitting.

The calculation of CEZ [205]

The method of choice for calculation of the virtual correns of Ref. [205] is similar to the techniques
adopted by the other groups and is based on the semi-nuimaetiaod of Ref. [221] augmented with
a mechanism to handle exceptional configurations [222].s Tiethod has already been used for the
NLO calculation of Higgs plus dijet production via gluoragh fusion [223]. Tree-level matrix ele-
ments for real radiation have been checked against thetsesfulladgraph[224]. Soft and collinear
singularities are handled using the dipole subtractiorseh[165]. As for the other authors, CEZ have
performed several checks to test the reliability of thedtecoThese include checks of Ward identities of
the amplitudes containing external gluons.

The calculation of Ref. [205] is however different from thther two in that the decay of the
W bosons is included from the outset. Rather than summing thxepolarizations of a W boson of
momentumk with

y L kMEY
ZE“E = [—g“ + M‘%V] ) (120)

the authors of this paper project out the combination ofjddéions which occurs in the physical decay
of the W bosonWV~ (k) — e~ (1) + v(l2),

1

ZEH&V - 2l.12 Tl 6y vel, o= (1 —75)/2. (121)
The inclusion of the decay is well-motivated from a physpaiht of view, because it allows phenomeno-
logical analyses which include cuts on the decay leptons.

For the purposes of the comparison of virtual matrix eleméntt a fixed phase-space point, the
results including the decays can be used to extract thetfestihe amplitude squared summed over the
polarization of the vector boson, as would be obtained uBpg120). This is achieved by performing
6x6=36 evaluations of the amplitude squared [225] in whicthdapton is emitted along three orthog-
onal axes (in both positive and negative directions) in theesponding vector-boson center-of-mass
frame. The results of this comparison, with input paransetened for the comparison, will be given
below.
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The calculation of BGKKS [206]

This calculation is also done in two independent ways. Thplygeneration is based QGRAF[155]
and was cross checked by having two independent codes. agtatins neglect the quarks of the 3rd
generation.

Up to now the LO part and the virtual corrections are evalllatBy using the spinor helicity
formalism, projectors on the different helicity amplitsdere defined. In this way all Lorentz indices can
be saturated such that the complexity of the one-loop 5tpeirsor reduction is such that at most rank-1
5-point integrals appear. For each helicity amplitude geladaic representation in terms of certain basis
functions is obtained by using the reduction methods dgesion Refs. [142,175]. The whole algebra
is done in an automated way by usifR@RM [156] and MAPLE. In both approaches the IR divergent
integrals are isolated by using 6-dimensional IR finite bamctions such that IR poles are in 3-point
functions only. One implementation uses the function séhdd in Appendix C of Ref. [175], and uses
the implementation of th&ortran 90codegol enB0. The other computation uses standard scalar 2-
and 3-point functions as a basis. The complete algebraicctieh to d=6 scalar box and d=n scalar 2-
and 3-point functions is largely equivalent to a standarssBano—Veltman reduction. Only the 5-point
functions are treated differently [175]. Tractable aniabitexpressions of the coefficients to the two sets
of basis functions are obtained for each independent heaanplitude.

Discrete symmetries (Bose,C,P) are used to check and ettty amplitudes with each other.
The coefficients are exported tdrartrancode and used to evaluate the loop correction of the process.

For the treatment ofi5 the 't Hooft—Veltman scheme is applied. Thealgebra and the loop
momenta are split inté- and(D — 4)-dimensional parts. Whereas thganti-commutes with thé® = 4
matrices, it commutes with the gamma matrices defined #a D — 4. As is well known the QCD
corrections of an axial vector current are different frora lector part and a finite renormalisation has
to be performed. The following gauge boson vertex whichudek a finite counterterm for the axial part
(see e.g. Refs. [226—-228]) is used,

V#

. (0%
Vag ~ 90V + Z59a7"ys Wit Zs =1 - Cr—, (122)

to reinforce the correct chiral structure of the amplitudgste that the 't Hooft—Veltman scheme treats
the observed particles in 4 dimensions but the soft/cdlirgguons inD dimensions. This guarantees
that for the IR subtractions the same Catani—Seymour difgolas as for conventional dimensional
regularisation can be used [229].

12.3 Tuned comparison of results

The following results essentially employ the setup of R2@4]. The CTEQ6 [18, 230] set of parton
distribution functions (PDFs) is used throughout, i.e. @BE1 PDFs with a 1-loop running; are
taken in LO and CTEQ6M PDFs with a 2-loop runniagin NLO. Bottom quarks in the initial or final
states are not included, because the bottom PDF is supgresdeto the others. Quark mixing between
the first two generations is introduced via a Cabibbo afigle- 0.227. In the strong coupling constant
the number of active flavours i§y = 5, and the respective QCD parametersz&&@ = 165 MeV and
AMS = 226 MeV, leading toa© (M) = 0.13241687663294 anda'™C (M) = 0.12026290039064.
The top-quark loop in the gluon self-energy is subtractedead momentum. The running of; is,
thus, generated solely by the contributions of the lightrig@and gluon loops. In all results shown in
the following, the renormalization and factorization &sahire set td/yy. The top-quark mass is; =
174.3 GeV, the masses of all other quarks are neglected. The weakloasses ardy;, = 80.425 GeV,
M,z = 91.1876 GeV, andMy = 150 GeV. The weak mixing angle is set to its on-shell value, edi
by ¢2 = 1—s2 = M3 /M2, and the electromagnetic coupling constanis derived from Fermi’s
constant,, = 1.16637 - 10-° GeV~? according tox = v/2G,, M3 s2 /.
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(Muol*/e*/g3[GeV 7]
ui — WTW =g 0.9963809154477200 - 103
dd — WHW=g 0.3676289952184384 - 10~°
ug — WHW-—u 0.1544340549124799 - 1073
dg — WHTW~=d 0.1537758419168101 - 10~°
gt — WTW~a 0.7491333451663728 - 10~*
gd — WTW~=d 0.2776156068243590 - 10~1

Table 6: Results for squared LO matrix elements at the ppaee point (123).

We apply the jet algorithm of Ref. [231] witR = 1 for the definition of the tagged hard jet and
restrict the transverse momentum of the hardest jetby; > 100 GeV.

12.4 Results for a single phase-space point
For the comparison the following set of four-momenta is emps

P = (7000,0,0,7000),  p¥ = (7000,0,0,—7000), (123)
ph = (6921.316234371218, 3840.577592920205, 0, 5757.439881432096),

ph = (772.3825553565997, —67.12960601170266, —279.4421082776151, —712.3990141151700),
P (6306.301210272182, —3773.447986908503, 279.4421082776151, —5045.040867316925),

where the momentum assignment isd@@p;)b(p2) — W (p3)W ™ (p4)c(ps).

Table 6 shows some results for the (spin- and colour-sumsgeired LO matrix elements, as
obtained withMadgrapH148]. The results of all three groups agree with these nusnlvehin about 13
digits.

Because of the different treatment of the number of activ@€les in the calculations of DKU and
CEZ and in order to be independent of the subtraction schecaicel IR divergences, we found it useful
to compare virtual results prior to any subtraction. Thgy) contribution to the virtual, renormalized
squared amplitude is given by the interference betweerdérext and one-loop virtual amplitude, which
we denote schematically as

§ 1 1
QRG{MV . MLO} = e4g§f(,uren) <C_26_2 + C_1E + C()> s (124)

With?3 f(piren) = T'(1 +¢€)(dmp,, /M2, ) and the number of space—time dimensiéhs- 4 — 2e. In the
following we split the coefficients of the double and singt#epand for the constant part, -, c_1, and
co, into bosonic contributions (“bos”) without closed fermitbops and the remaining fermionic parts.
The fermionic corrections are further split into contribats from the first two generations (“ferm1+2")
and from the third generation.

Table 7 shows the results for the bosonic parts of the coeflist o, c_1, andey (c_o does not
receive fermion-loop corrections). The results@robtained by the different groups typically agree
within 7—11 digits; the ones on_» andc_; agree much better, because they are much easier to calculate
The results for the fermionic contributions of the first twengrations are given in Table 8. Compared to
the bosonic corrections these contributions are suppdsséhree orders of magnitude. Counting this
suppression factor, which results from cancellations,ig@ifecant digits, the finite parts agree within
6—9 digits. The agreement is somewhat better in the coefficigfritse single pole, which entirely stems
from the counterterm of the fermion-loop part of the gluotf-eeergy. The remaining contributions

ZNote that this factor differs from the overall factar extracted when quoting results for one phase-space paineiEEZ
paper.
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c_o[GeV™2 P [GeV 2 cbos[GeV 2

u — WTW g

DKU —1.080699305508758 - 10~4  7.842861905263072 - 10~%  —3.382910915425372 - 103

CEZ  —1.080699305505865 - 10~*  7.842861905276719 - 10~* —3.382910915464027 - 10~3
BGKKS —1.080699305508814 - 10~*  7.842861905263293 - 10~*  —3.382910915616242 - 10~3
dd — WTW—g

DKU —3.987394716797222 - 10~7  2.893736116870099 - 10~¢  —1.252531649334637 - 10~

CEZ  —3.987394716665197 - 10~7 2.893736115389983 - 10~6 —1.252531614999332 - 10~
BGKKS —3.987394716798342-10~" 2.893736117550454 - 1076 —1.252531647620369 - 10>
ug — WTW-u

DKU —1.675029833503229 - 1075 1.236268430131559 - 10~*  —5.417120947927877 - 10~

CEZ  —1.675029833501256 - 107° 1.236268430124113-10~* —5.417120948004078 - 10~*
BGKKS —1.675029833503285 - 107>  1.236268430131930- 10~* —5.417120948184518 - 10~*
dg — WTW~—d

DKU —1.667890693078443 - 107 1.231000679615805 - 10~%  —5.402644808236175 - 10~6

CEZ  —1.667890693268847-10~7 1.230999331981130-10"% —5.402644353170802 - 10~6
BGKKS —1.667890693077475-10~" 1.230999333576065 - 1076  —5.402644211736123 - 10~°
gu — WTW~u

DKU —8.125284951799448 - 1076 7.047108864062224 - 107>  —3.525581727244482 - 10~

CEZ  —8.125284951286924 - 1076 7.047108863931619- 107> —3.525581728065669 - 10~*
BGKKS —8.125284951799859 - 1076  7.047108864102780 - 10~° —3.525581727287365 - 10~*
gd — WHW—d

DKU —3.011087314520321 - 1075 2.611534269956032 - 107>  —1.326197552139531 - 10~*

CEZ  —3.011087314528406 - 1076 2.611534269870494 - 10~° —1.326197549152728 - 10~*
BGKKS —3.011087314520429 - 107%  2.611534269951226 - 107> —1.326197552106838 - 10~

Table 7: Results for the bosonic virtual corrections at thaese-space point (123) with o, c_1 andcy are defined in Eq. (124).
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CfielimlJrZ[GerQ] cgermlJrQ[GerQ]

w — WTW—g

DKU  2.542821895320379-10~°  4.372323372044527 - 107

CEZ  2.542821895311753-107°  4.372790378087550 - 10~7
BGKKS 2.542821895314862 - 10~°  4.372324288356448 - 10~ 7
dd — WTW—g

DKU  9.382105211529244 - 10~8  2.383985481697933 - 108

CEZ  9.382105220158816 - 10~8  2.381655056763332 - 108
BGKKS 9.382105215996126 - 10~8  2.383986138730693 - 108
ug — WTW-u

DKU  3.941246664484964 - 1076  2.261655163318730 - 107

CEZ  3.941246667066658 - 1076  2.261900862449825 - 10~7
BGKKS 3.941246667066566 - 1076 2.261651778836927 - 10~ 7
dg — WTW—d

DKU  3.924449049876280 - 10~® —3.340508442179341 - 108

CEZ  3.924448807787651 - 10~8 —3.341842650545260 - 10~8
BGKKS 3.924448689594072 - 10~8  —3.340505335889721 - 10~8
g — WTW~u

DKU  1.911831753319591-10"6 —3.332688444715011 - 10~ 7

CEZ  1.911831753400357-10°6 —3.332770821153847 - 10~7
BGKKS 1.911831753364673-10~% —3.332688443882355- 107
gd — WTW~—d

DKU  7.084911328500216 - 10~7 —3.420298601940541 - 10~

CEZ  7.084911328417316-10"7 —3.419939732016338 - 10~7
BGKKS 7.084911328283340 - 1077 —3.420298578631734 - 10~7

Table 8: Results for the fermionic contributions of the firgd quark generations t@_; andc, at the phase-space point (123).

c_2[GeV~2] c_1[GeV~2] co[GeV 2]
ut — WTWg
DKU —1.080699305508778 - 10~% 8.160714642177893 - 10~% —3.382201173786996 - 10~3
dd — WTW—g
DKU —3.987394716797186 - 10~7 3.011012432041691 - 10~¢ —1.248828433702770 - 10~
ug — WTW-u
DKU —1.675029833503229 - 10>  1.285534013444099 - 10~* —5.413834847221341 - 10~4
dg = WTW d
DKU —1.667890693078551 - 107 1.280056291844283 - 106 —5.452219162448072 - 10~6
g — WTW~1
DKU —8.125284951799523 - 106  7.286087833227389 - 10~° —3.528788476602400 - 10~*
gd—WTW d

DKU —3.011087314520238 - 10~¢  2.700095661561590 - 10~°  —1.331943241722592 - 10~*

Table 9: Results for the full bosonic+fermionic contrilauts toc_2, c—1 andcy at the phase-space point (123).
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pp — W+W7+j€t—|-X O'Lo[fb] UNLo[fb] Uvirt+I[fb]
DKU 10371.7(12)  14677.6(98) —881.5(42)

CEZ 10372.26(97)

BGKKS 10371.7(11)

Table 10: Results for contributions to the integrated ppss®ections at the LHC in LO and NLO.

from closed loops of the third quark generation are not caegget. For future reference we show the
full corrections including all bosonic and fermionic cahtrtions in Table 9.

12.5 Results for integrated cross sections

A tuned comparison of integrated cross sections is stillFogpess. Table 10 illustrates the agreement
in the LO cross section obtained by the different groups andiges the DKU result in NLO for future
comparisons. The subcontributiety,.,1 corresponds to the IR-finite sum of the virtual correctiond a
the contribution of thd operator that is extracted from the real corrections withdlpole subtraction
formalism [165].

12.6 Conclusions

We have reported on an ongoing tuned comparison of NLO QCg&utzlons to WW+jet production at
the LHC. For a fixed phase-space point, the virtual correstmbtained by three different groups using
different calculational techniques agree within 6—9 digithe comparison of full NLO cross sections,
which involve the non-trivial integration of the virtualiwections over the phase space, is still in progress.

The agreement found so far gives us confidence in the conasisirawn for physical quantities,
which were reported in Refs. [204, 205].
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13. FROM THE HIGH ENERGY LIMIT OF MASSIVE QCD AMPLITUDES TOTH E FULL
MASS DEPENDENCE?*

13.1 Introduction

Itis clear that the physics program of the LHC poses new ehgks to the theory. In fact, the description
of hadronic collisions involves several quantities, babh4perturbative and perturbative, the determina-
tion of which is a highly non-trivial task. As far as the peliative part is concerned, we are still a
long way of having the partonic cross sections predictedsatitable level of accuracy. Whereas most
processes will have to be known to next-to-leading ordergtlare some for which the experimental pre-
cision grants a study going one order higher in the stronglaay constant. Particularly interesting here
is the top quark pair production cross section. With staggjoing into millions of events, a systematics
dominated error of under 10% is expected already in the firase of the LHC. Despite years of efforts,

24Contributed by: M. Czakon
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the appropriate complete NNLO prediction is not yet avddalhe bottleneck, as in most such cases is
the evaluation of the two-loop virtual corrections.

Recently, the high energy limit of the amplitudes in the guamnihilation and gluon fusion chan-
nels has been derived [232, 233] by a mixture of direct evmlnaf Feynman graphs and an approach
based on factorization properties of QCD (see A. Mitov’s &ndiloch’s contribution). The knowledge
gained can already be used for the description of higkevents and as a test of a future complete pre-
diction. Clearly due to the behavior of the particle fluxebatvis needed is a calculation covering the
whole range of variation of the kinematical parameters iitieresting that one can actually use the high
energy limit to deal with this problem. Unfortunately, itnst enough to have the whole amplitude, but
it is rather necessary to know all of the master integralghénfollowing, | describe the steps that lead
to the complete result.

13.2 The high energy limit

By the high energy limit, | understand the limit where all theariants are much larger than the mass. A
direct approach to the evaluation of the amplitude underabsumption has been devised in [234, 235].
As a first step, one uses the Laporta algorithm to reduce aleofntegrals occurring to a small set of
masters. In the case at hand, the number of integrals is Idt82thfor the quark annihilation and gluon
fusion channels respectively.

Subsequently, Mellin-Barnes representations are cartstifor all the integrals [236,237]. This
can be done by an automatic package, here by one written biutier and G. Chachanfid After
analytic continuation in the dimension of space-time panied with the MB package [239], the integrals
have the following general form

I = (m?)n—2 /_Z dz <—m;)zf <£z> (125)

where thef function contains, amongst others, a produdt pdr possiblyy functions, which have poles

in z. The desired expansion is obtained by closing the contodntaking residues. As a result, one
obtains integrals which have lower dimension and a simgteictire. These still require evaluation.
Due to the fact, that there is a relation between the maseiyéhe massless cases, the result must have a
similar structure. In particular, it has to be given by hanmiegolylogarithms, and therefore it should be
possible to resum the integrals by further closing contam evaluating the resulting series. This can
again be achieved automatically with the help of the XSumpaekage [240].

What remains at the end are integrals, which are pure numiberslo not have a structure sug-
gesting a solution in terms of harmonic series. The sameawagtias before shows, however, that this
must be the case. Instead of working out specific methodsdudrcplar integrals, it turned out to be
possible to evaluate them to very high precision and sulesglywse the PSLQ algorithm to reconstruct
the solution in terms of Riemann zeta values.

It has to be noted, that the procedure sketched above workbdamajority of cases, but some
remain at the end. For these, it is usually necessary to ehtliegbasis of integrals, in order to obtain
expressions of suitable structure and/or size for evalnatht present this program has been completed
for the quark annihilation channel, and thus all the colanctres given in [232] have been computed
directly with agreement with the factorization approache Bluon fusion channel is still under way.

13.3 Power corrections

As explained in the introduction, the high energy limit bseif is not enough for practical applications.
To go one step further, it is possible to compute power ctimes in the mass. These will then cover

ZThere is a public package available [238] that construgisesentations for planar graphs. In the present case, aiso n
planar graphs occur, however.
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Fig. 27: Bare leading color amplitude for top quark pair pretibn in the quark annihilation channel expanded in thesmas
The more divergent terms at threshold (left of the plotsyespond to higher orders of expansion. The left panel cooreds
to 90 degree scattering, whereas the right to forward soagteThe variables are defined in the text.

most of the range, apart from the threshold region and thdl smgle region, where the series is not
convergent any more.

The main idea is as follows. The derivative of any Feynmaegral with respect to any kinemat-
ical variable is again a Feynman integral with possibly Bighowers of denominators or numerators.
These can, however, be reduced to the same master integhidsmeans that one can construct a par-
tially triangular system of differential equations in thass [241,242], which can subsequently be solved
in the form of a power series.

In Fig. 27, | show the result of expansion for the leading ctdom. The kinematic variable is
t
l':—;, t:(p3_p1)2_m%7 (126)

and its variation within the range /2(1 — 3),1/2(1 + )], where3 = /1 — 4m?/s is the velocity,
corresponds to angular variation between the forward aokivird scattering.

The series appears to be asymptotic at the boundaries. tunébely, the behavior is worse for the
subleading color terms, as a consequence of the Coulomblarity among others.

13.4 Numerical evaluation

Using the same system of differential equations one cariroatiull numerical solution to the problem.
The only requirement is to have the boundary conditions t@Ble accuracy. These are provided by
the series expansions of the previous section. It is craciperform the numerical integration along a
contour in the complex plane, since there are spurious Eiriges along the real axis. Here, | chose
an ellipse, because of the improved control on the integmnagiror that one gets from the software used
(ODEPACK).

Fig. 28 shows the solution in the range, where the expangitimeqrevious section starts to di-
verge. The achievable precision, if double precision arétic is used, is about 10 digits for most points,
with evaluation times of the order of a second. This is gombe substantially slower, when subleading
color terms will be added. However, the method is fast andipeeenough to be sufficient for practi-
cal applications. In particular it is possible to constrgatls of solutions, which will be subsequently
interpolated when implemented as part of a Monte Carlo pmogr

Itis clear that the method is suitable for problems, whicheharelatively small number of scales,
and seems to be perfect far— 2 QCD processes at the two-loop level. The main drawback isittee
of the expressions, and the difficulties connected to thiwateyn of the boundary conditions.
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Fig. 28: Full mass dependence of the bare leading color &ndelin the quark annihilation channel.

13.5 Conclusions

| have described an approach for the evaluation of massive &aplitudes starting from the high energy
limit and its application to the NNLO corrections to the tapagk pair production cross section. Needless
to say, the same procedure can be applied to other problemtecést. At present the Author, together
with G. Chachamis and D. Eiras, is working on the correctiorgauge boson pair production.
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14. MUCH CAN BE SAID ABOUT MASSIVE AMPLITUDES JUST FROM KNOWI NG
THEIR MASSLESS LIMIT 26

14.1 The high-energy limit

For the precise evaluation of collider observables the kedge of the pure virtual correction to the
corresponding Born process is required. This is true at adgrqNLO, NNLO, etc). In presence of
heavy flavors, and especially at higher orders, the probleimed evaluation becomes acute.

There are very important applications awaiting such resulin example of central importance
is top production at LHC which is one of the few eagerly awdjieecisionobservables at this collider.
One of the peculiar features of top production at LHC, andintiast to the situation at the Tevatron, is
that no specific kinematical region dominates the crostesecThis is due to the shape of the luminosity
function for LHC kinematics.

Direct calculation of the amplitudes is certainly a very @@ing task and it seems that one can
hope that numerical results in some, hopefully easy to fafatinm, will become available soon (see
the contribution by M. Czakon for progress in this direcjiodere we consider an alternative approach
which explores the special properties of the gauge theopliardes in the high-energy limit and easily
provides (partial) results for the heavy flavor amplitudesneat higher perturbative orders.

#Contributed by: A. Mitov, S. Moch
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In the following we start by introducing the conceptto§h-energy limitwith the help of simple
and physically motivated arguments. By high-energy linmieaneans a kinematical situation where
the corresponding invariants are much larger than the rmadshe heavy particles of interest. In the
following we will consider the case of a single massive fenmwith massn in presence of a typical
large kinematical invarianf). Specific examples are detailed in section 14.3. If the qtyaoitinterest
(like total or differential cross-section, amplitude, .¢tis regular in the limitn/Q — 0 then the high-
energy limit is quite trivial: itis amn-independent function of the kinematical invariants wigoimcides
with the one evaluated in the massless limit. Thereforenttmcomputed by setting the masgo zero
from the very beginning.

Such a situation is, however, relatively rare. In most giastof interest, like the differential
ones, the limitn/Q) — 0 is singular. The obvious manifestation of that singulairityhe results is the
presence of terms of the type In"(m/Q). When such contributions appear (and in fact this is the
typical situation) the high-energy limit is defined as thik fiesult with all power corrections in the mass
neglected, i.e. it contains all logarithms (not multipliegd powers of the mass) as well as the so-called
“constant” or mass-independent terms. Clearly, in sucks#®e high-energy limit is different from the
massless limit.

Before we detail the relation between these two limits, weilddirst like to clarify the origin
and meaning of the logarithmic terms mentioned above. Ttexses are known as (quasi-) collinear
logs since they originate from emissions of collinear rddia To be precise, the role of the mass is to
regulate small angle emissions that would otherwise de/émga massless theory; see Ref. [243] for a
detailed exposition. In this regard, a parton’s mass geas significance, since one can take one of the
following two viewpoints:

e small or large, the mass is nevertheless non-zero, therdfier result is always (collinearly)
finite;

e the small mass is just a formal regulator for collinear slagties much like dimensional regu-
larization in the purely massless case.

In this write-up we take the unifying viewpoint that both apgpches are useful and do not have
to be considered as alternatives to each other. One candhthke mass as a regulator which is helpful
in deriving certain properties of the theory but it can alsalfought of as an approximation to the full
massive result which is surprisingly good in many physiggilzations.

The prominent role these logarithmic terms play in physaadlications has been acknowledged
long ago, and has been formalized in the so-called Perivetfatagmentation Function approach [244]
now known through two-loops [245, 246]; for a recent revieg §£247]. The idea behind this formalism
is the fact that up to power corrections in the mass, a diftiewith respect to some kinematical
parameter cross-section for the production of a massive paftocan be written as:

N

%(z, Q,m) = ; %(z, Q) ® Dy (2,m) + O(m) . (127)

The functionD,_.,(z, m) does not depend on the hard sc@l@nd is thus a process independent
object that can be computed to any fixed order. It has the itapoproperty that it contains all the mass
dependence within the approximation indicated in Eq. (1@0) the other side the partonic cross-section
dao, for the production of any partanis intrinsically massless, i.e. it is obtained from a cadtioln where
m = 0 is set from the very beginning. Of course, collinear singti&s are still present in a massless
calculation but they are regulated dimensionally, i.ey @ugpear as poles i) whered = 4 — 2¢:

dog, do
ezQue) = ; 2(2,Q) @ Thaz,€) (128)

The explicit expression for the collinear counterterngontains arbitrariness; the only condition on it
is that it contains all poles ia. It has become a standard practice in recent years to woltheiivis
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scheme wher€ contains only poles. The choice of a subtraction schemedswfse also implicit in the
definition of the functionD in Eq. (127).

From Egs. (127), (128) it is quite clear that one can obtairaagive cross-section in the small-
mass (or high-energy) limit by performing a purely massiealsulation. The calculational simplifi-
cations following from this can be enormous, especiallyigh@r orders. The usefulness of such an
approach has been appreciated in the past in many applisagtated to heavy quark production (typ-
ically b andc) at special kinematics like largér hadroproduction and*e~ annihilation at theZ-pole
(see [248] for a review). In such kinematical configuratitims neglected power corrections can be as
low as a few percent effect and are often totally negligible.

A second virtue of Eq. (127), and one that cannot be matchedriventional perturbation theory,
is that it allows resummation of large collinear logg(@ /m) to all perturbative orders. This feature
is due to the fact that the functiob satisfies the DGLAP evolution equation, or in other words one
achieves exponentiation of the (remnants of) soft andredli singularities.

As we will demonstrate in the next section, all these featufemassive cross-sections in the
small-mass limit can be translated to massive amplitudgaimye theories where similar properties can
be uncovered. Moreover, one can exploit these properti@sioch the same way; this is illustrated by the
physical applications we consider in section 14.3.

14.2 Factorization in massive amplitudes

As was indicated above, in the following we will be concerméth the factorization properties of mas-
sive QCD amplitudes in the high-energy limit. Since one af imain objectives is to relate the small-
mass limit of an amplitude with its massless limit, we stant discussion with a brief review of the
well-known factorization properties of massless amphtid249, 250].

The scattering amplitudé,,

2
My) = M, ({ki},{mz-},{ci}%,am,e) , (129)

for a general — n scattering processes of on-shell partpns

p: pL+p2 — p3t+-+Pri2- (130)
with a set of fixed external momen{é; }, massegm,} and color quantum numbefs; }, can be written
in the massless case; = 0 as a product of three function@(mzo), Sr(,mzo) andH[P!,

(m=0) _ ~(m=0) (@ 2 (m=0) (1.1 @ 2
’Mp> _jp F)as(ru‘ )76 Sp {k2}7ﬁ7as(l’b )76 ‘Hp>7 (131)
The decomposition Eq. (131) can be understood with simpysipal arguments. The jet func-

tion jémzo) contains all collinearly sensitive contributions, is aetthagonal and depends only on the

external partons. On the other side the soft funcﬁ’gﬁzo) contains all soft radiation interferences and
is therefore process specific. Finally, the short-distatycemics of the hard scattering is described by
the (infrared finite) hard functiofi{,. To leading order this function is just proportional to therB
amplitude. More details about the above expressions caouralfin the review [251].

As was explained in [250], the decomposition Eqg. (131) dostarbitrariness related to subleading
soft as well as finite contributions, which can be removed kind a prescription. A convenient and
natural choice is to identify the jet function with the mass form factor for the flavor corresponding to
any particular leg, i.e.:

s = T o= T () a22)

i€ {all legs} 1€ {all legs}
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wherei = ¢, g for quarks and gluons?ﬁmzo) is the individual jet function of each external parton. The
needed massless jet factors are known through three-lombtha soft functions through two-loops for
any2 — n scattering process [252].

We are now ready to consider the massive case. Based on oussiisn in the previous sections
in the small-mass limit one should expect a decompositiomadsive amplitudes similar to the one in
Eqg. (131). Let us be more specific: we know that in the massage collinear logs do appear but we
also know that they should be absorbed in a correspondirigrjetion. On the other side, up to power
corrections, the soft and hard functions in the massive shsald be the same as in the massless case
since, by construction, they are not sensitive to colliraissions. With the exception of contributions
related to heavy quark loops (to be discussed below) in teegpice of a hard scalg we write for the
massive amplitudes (130):

2

2
My)m) = 7 </T fm}os(12), ) Sm=0) ({ki}, @ i), ) Hy) + O(m).  (139)

It is very easy to find out what the jet function in the massigsecshould be. Working in the
prescription chosen for the massless case, one can ap@yidéude decomposition to the form factor
itself; the latter has no nontrivial soft or hard functioffherefore, in the massive case the jet function
must be nothing but the massive form factor evaluated inrfredlsmass limit.

Combining Egs. (131), (133) one gets the following very gjiye relation [253]:

1
M = I (A7) < M= om ., (134)
i€ {all legs}
where,
2 2 2 2 -1
(m[o) (T _ pm) (@7 m (m=0) [ Q
Z[Z] (F7a876> - f[z] <F7?7QS76> <fm <?7a876>> + ... ) (135)

is a universal, process independent factor. It is sendibitbe definition of the mass: as well as the
coupling constant (see [253] for details). The processetidence in Eq. (135) is manifest because

7m0 g only a function of the process-independent ratio of sgatgm?. The process-dependent scale

Q[Z;J:ancels completely between the massive and the massless$afciors.

The last statement, however, requires one important datifin. From the explicit results for the
massive and massless form factors one can easily see thaigsfeom two loops the ratio indicated
above contains alsQ-dependent logarithmic terms originating from diagramsie heavy parton in
loops. It is these terms that we have indicated with dots in(E85). Luckily, these terms are easy to
recognize and to separate since in the color decomposititre @amplitudes they are proportional to the
number of heavy flavors,. For that reason in the definition &f-factor given originally in Ref. [253]
contributions proportional to the number of heavy flavorgehbeen excluded, as indicated by the dots
in Eq. (134). A first step in the understanding of the loop dbantions and their incorporation into
the factorization approach was made in Ref. [254] in the @drif Bhabha scattering. We discuss this
process as well as other applications in the next section.

Comparing the results of this section with the ones in theipus section, we can clearly see the
similarities offered by QCD factorization between smalsa limits of amplitudes and cross-sections.
In both cases the small-mass results are proportional tedhesponding massless results. The pro-
portionality factors are process independent and unilef$g proportionality is in the sense of usual
multiplication for amplitudes and convolution for crossetons, as usual. Moreover, it was explained in
Ref. [253] the so-called-factor in Eq. (135) seems in fact to equal the pure virtualtigbutions to the
perturbative fragmentation functian in Eq. (127).
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14.3 Applications

The results in the previous section have been cross-chetkibd amplitude level with the general-mass
predictions for the structure of thepoles andn(m) terms of any one-loop amplitude [243]. Complete
agreement was found. We have also checked that for the groges> hh the prediction based on
Eq. (134) completely agrees with the results from the owg-lcalculation of Ref. [255]. We want to
stress that we have compared not only the singular termsldmitall terms that are finite in the limits
e — 0 andm — 0. The agreement applies to all color structures of the ang#ias well as for both its
real and imaginary parts.

In subsequent work [232,233] a prediction for the small-srlasit of all two-loop heavy quark
production squared amplitudes at hadron colliders has beste, while the terms proportional g
were obtained from a direct calculation. We will not go inttalls here (they can be found for example
in the recent review [251]) but will only summarize the magatfures of the result: several of the color
structures were calculated both directly as well as prediand we observed full agreement between the
two approaches. Therefore, this is a first two-loop chechHerfactorization approach and represents a
direct confirmation of its validity.

Another obvious application where the small-mass limiyplenportant role is Bhabha scattering.
The knowledge of the two-loop QED massive amplitudes in thalkmass limit there is needed for
achieving the intended precision of the luminosity mean@rmt; see for example [256]. Complete results
for the photonic corrections to large-angle Bhabha sdagevere first obtained by Penin [257] and later
confirmed in Ref. [254] in the approach discussed in the presssection. Therefore, this is yet another
example of its usefulness and power.

14.4 Conclusions

We have presented a newly developed relation between maasiy massless QCD amplitudes. We
have emphasized its relevance for physical applicatiodstarability to seamlessly produce results for
processes that cannot be calculated currently by direchsnea

The relation was introduced based on the idea for masshagli a massive amplitude and was
given in parallel to the much better known relation betweerssive and massless differential cross-
sections.

The new relation between massive and massless amplitupeseats the proper generalization
of the naive textbook replacement relatibfe — In(m) + ... to all perturbative orders and for any
process. Moreover, with the obvious identification of théocéactors, the relation is applicable to any
SU(N) gauge theory, QCD being a prominent example. QCD and QEDcapipins like heavy quark
production at hadron colliders at two loops and two-loopgections to Bhabha scattering were briefly
discussed.

15. NNLO PREDICTIONS FOR HADRONIC EVENT SHAPES IN ete~ ANNIHILATIONS 27
15.1 Introduction

For more than a decade experiments at LEP (CERN) and SLC (fFbatbered a wealth of high pre-
cision high energy hadronic data from electron-positromifasifation at a range of centre-of-mass ener-
gies [258-274]. This data provides one of the cleanest wiggobing our quantitative understanding of
QCD. This is particularly so because the strong interastastur only in the final state and are not en-
tangled with the parton density functions associated wéidniis of hadrons. As the understanding of the
strong interaction, and the capability of making more medtheoretical predictions, develops, more and
more stringent comparisons of theory and experiment arsilgles leading to improved measurements
of fundamental quantities such as the strong coupling eon§248, 275].

ZIContributed by: G. Dissertori, A. Gehrmann—De Ridder, Th@eann, E.W.N. Glover, G. Heinrich, H. Stenzel
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In addition to measuring multi-jet production rates, mopedfic information about the topol-
ogy of the events can be extracted. To this end, many vasdidee been introduced which charac-
terise the hadronic structure of an event. With the pregisiata from LEP and SLC, experimental
distributions for such event shape variables have beemsxtdy studied and have been compared
with theoretical calculations based on next-to-leadindeo{NLO) parton-level event generator pro-
grams [207,276-281], improved by resumming kinematiedtyninant leading and next-to-leading log-
arithms (NLO+NLL) [282-287] and by the inclusion of non-pebative models of power-suppressed
hadronisation effects [288—291].

Comparing the different sources of error in the extractibnofrom hadronic data, one finds that
the purely experimental error is negligible compared talie®retical uncertainty. There are two sources
of theoretical uncertainty: the theoretical descriptidrih@ parton-to-hadron transition (hadronisation
uncertainty) and the uncertainty stemming from the trupocadf the perturbative series at a certain
order, as estimated by scale variations (perturbative alesgncertainty). Although the precise size
of the hadronisation uncertainty is debatable and perh&ipa onderestimated, it is conventional to
consider the scale uncertainty as the dominant source ofétieal error on the precise determination
of as from three-jet observables. This scale uncertainty camWwered only by including perturbative
QCD corrections beyond NLO.

We report here on the computation of NNLO corrections to eghape distributions, and discuss
the impact of these corrections on the extractionofrom LEP data.

15.2 Event shape variables

In order to characterise hadronic final states in electmsitppn annihilation, a variety of event shape
variables have been proposed in the literature, for a regesve.g. [287,292]. These variables can be
categorised into different classes, according to the nahimmber of final-state particles required for
them to be non-vanishing: In the following we shall only doles three particle final states which are
thus closely related to three-jet final states.

Among those shape variables, six variables were studiedeiat gletail: the thrust' [293, 294],
the normalised heavy jet mapg295], the wide and total jet broadeningsy and By [296], theC-
parameter [297, 298] and the transition from three-jet to-j&t final states in the Durham jet algorithm
Y3 [299-303].

The perturbative expansion for the distribution of a gemebiservable;, up to NNLO atete™
centre-of-mass energys, for a renormalisation scajé, is given by

_ 2 — 1
Ldo oy <a5(u2)> dA+<M> <(Z_B+d—AﬁologM—2>
y  dy s

Ohad dy or ) dy o
2\\ 3 A 5, 2
2 dy dy S

A 2 2
—I—d—A (ﬁg log? r + 1 log ,u_) ) +0(ad). (136)
dy s s
The dimensionless perturbative coefficieAts3 andC depend only on the event shape variapl@hey
are computed by a fixed-order parton-level calculationciimcludes final states with three partons at
LO, up to four partons at NLO and up to five partons at NNLO. L@ Bih.O corrections to event shapes
have been available already for a long time [207,276-281].

The calculation of the NNLO corrections is carried out usingewly developed parton-level event
generator programmEERAD3 which contains the relevant matrix elements with up to fiveeeal
partons [129, 150, 304-311]. Besides explicit infrarecedjences from the loop integrals, the four-
parton and five-parton contributions yield infrared divergcontributions if one or two of the final state
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partons become collinear or soft. In order to extract thefsared divergences and combine them with the
virtual corrections, the antenna subtraction method [312}was extended to NNLO level [315-318]
and implemented farte™ — 3 jets and related event-shape variables [319]. The analyticaledtation

of all infrared divergences serves as a very strong checlernniplementation.EERAD3 vyields the
perturbatived, B andC coefficientg® as histograms for all infrared-safe event-shape variaielesed

to three-particle final states at leading order. As a crosgichthe A and B coefficients have also
been obtained from an independent integration [279-281je@NLO matrix elements [207], showing
excellent agreement.

For small values of the event shape variahl¢he fixed-order expansion, eq. (136), fails to con-
verge, because the fixed-order coefficients are enhanceamrp of I(1/y). In order to obtain reliable
predictions in the region af < 1 it is necessary to resum entire sets of logarithmic term# atders in
a,. A detailed description of the predictions at next-to-iegdogarithmic approximation (NLLA) can
be found in Ref. [321].

15.3 Generic features of the NNLO corrections

The precise size and shape of the NNLO corrections depenueonbiservable in question. Common to
all observables is the divergent behaviour of the fixed-opdediction in the two-jet limit, where soft-
gluon effects at all orders become important, and wheremegation is needed. For several event shape
variables (especially’ and(C) the full kinematical range is not yet covered for three past but attained
only in the multi-jet limit. In this case, the fixed-order dégtion is also not applicable since it is limited
to a fixed multiplicity (five partons at NNLO). Consequentlye fixed-order description is expected to
be reliable in a restricted interval bounded by the twoijaitlon one side and the multi-jet limit on the
other side.

In this intermediate region, we observe that inclusion ofLlINcorrections (evaluated at tHe-
boson mass, and for a fixed value of the strong coupling cot)stgpically increases the previously
available NLO prediction. The magnitude of this increadtedi considerably between different observ-
ables [320, 322], it is substantial f@r (18%), By (17%) andC' (15%), moderate fop and By (both
10%) and small foys (6%). For all shape variables, we observe that the renosat&in scale uncer-
tainty of the NNLO prediction is reduced by a factor of two oona compared to the NLO prediction.
Inclusion of the NNLO corrections also modifies the shapénefdvent shape distributions. We observe
that the NNLO prediction describes the shape of the measwedt shape distributions over a wider
kinematical range than the NLO prediction, both towardstine-jet and the multi-jet limit. To illus-
trate the impact of the NNLO corrections, we compare the fowter predictions folr's to LEP2-data
obtained by the ALPEH experiment in Figure 29, which illasts especially the improvement when
approaching the two-jet region, corresponding to larg®(Y3).

15.4 Determination of the strong coupling constant

Event shape data from LEP and LEP2 were used in the past farcsprdetermination of the strong
coupling constant;. These studies were based on the previously available Ns@tse improved by
NLLA resummation; the resulting error an, was completely dominated by the renormalisation scale
uncertainty inherent to the NLO calculation. Using the neadmputed NNLO corrections to event
shape variables, we performed a new extractionofrom data on the standard set of six event shape
variables, measured by thhd.EPH collaboration [259] at centre-of-mass energies of 91.3, 1%1,
172, 183, 189, 200 and 2@6eV. The event-shape distributions were obtained using thenstucted
momenta and energies of charged and neutral particles. Hasurements have been corrected for
detector effects, ie., the final distributions correspomé tso-called particle (or hadron) level (stable
hadrons and leptons after hadronisation).

284, B andC differ from A, B andC in their normalisation ta instead ofryaq [320].
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Fig. 29: Perturbative fixed-order predictions for thig-distribution.

The coupling constant, is determined from a fit of the perturbative QCD predictiansieasured
event-shape distributions. The procedure adopted hdmviklosely the one described in Ref. [259].
Event-shape distributions are fitted in a central regiorhefthree-jet production, where a good pertur-
bative description is available. The fit range is placedd@she region where hadronisation and detector
corrections are below 25 and the signal-to-background ratio at LEP2 is above onehéhtgher LEP2
energies the good perturbative description extends fuithe the two-jet region, while in the four-jet
region the background becomes large. Thus the fit rangegstsél as a result of an iterative procedure
balancing theoretical, experimental and statistical taggies.

Here we concentrate on fits of NNLO predictions [323] and carepghem to pure NLO and
matched NLO+NLLA predictions as used in the analysis of &§9]. Results from individual event
shapes are displayed in Figure 30. The combination of all @NEeterminations from all shape variables
yields

as(M2) = 0.1240 + 0.0008 (stat) & 0.0010 (exp) + 0.0011 (had) + 0.0029 (theo),  (137)

which is indicated by the error band on Figure 30. We obserglear improvement in the fit quality
when going to NNLO accuracy. Compared to NLO the valuexofs lowered by about 10%, but still
higher than for NLO+NLLA [259], which shows the obvious nefed a matching of NNLO+NLLA
for a fully reliable result. The scatter among the-values extracted from different shape variables is
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Fig. 30: The measurements of the strong coupling constarfor the six event shapes, ats = My, when using
QCD predictions at different approximations in perturbatiheory.

lowered considerably, and the theoretical uncertaintyeielsed by a factor 2 (1.3) compared to NLO
(NLO+NLLA).

These observations visibly illustrate the improvemenisagfrom the inclusion of the NNLO
corrections, and highlight the need for further studiesten matching of NNLO+NLLA, and on the
derivation of NNLLA resummation terms.

Acknowledgements

This research was supported in part by the Swiss Nationangei Foundation (SNF) under contract
200020-117602, by the UK Science and Technology Facilfieancil and by the European Commi-

sion’s Marie-Curie Research Training Network under cattMRTN-CT-2006-035505 “Tools and Pre-

cision Calculations for Physics Discoveries at Colliders”

Part IV
PARTON SHOWERS

16. DEVELOPMENTS IN LEADING ORDER PARTON SHOWERS 2°

At the Les Houches workshop, there was lively discussionaofgm showers as represented in Monte
Carlo event generators. One of the main current issues srfitid is the problem of matrix-element

2Contributed by: D.E. Soper, P.Z. Skands
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/ parton-shower matching, and the workshop saw severalteepa ways of (re-)formulating parton
showers that could make this problem easier to deal witheradtone might denote with a fancy word
as “designer showers”. In this section, we review the pathaf discussion that relates to how a leading
order parton shower can be organized. Despite the appaffamedces, all the new approaches can be
discussed at a common footing if we adopt a little bit of notatadapted from [324]).

A typical parton shower algorithm for hadron-hadron caiis works with states with two ini-
tial state partonsa andb, and some number of final state partons that we can label with integers
1,2,...,m. The momenta of these partons can then be specified by diving = {pa, P, P1, .- -, Pm }-
Each parton also carries a flavpre {g,u,1,d,d,...}, so that the momenta and flavors can be speci-
fied with {p, f}... Typically, we also keep track of color connections (theslalof one or two partons
to which partoni is connected in the leading-color limit). We may therefoeaate the complete set of
m + 2 partons by{p, f, c}.,, wherec denotes the color connections.

We can now consider the statb{qo, 1, c}m) to form a basis for a vector space in the sense of
statistical mechanics. After some amount of shower evatusitarting from a basis statép, 7/, 6}2)
with two final state partons, one reaches a sﬁ,a)ethat is a linear combination of basis states, so that
({p, f. c}m|p) represents the probability, in the shower model, for théesta to consist ofm + 2
partons with momenta, flavors, and coldgs f, ¢} .

As the state develops, partons split. The evolution of theess tracked with a shower “time”
t which can be interpreted as (the logarithm of) a typical tfiovea quantum process such as a parton
splitting. In most of the current algorithms, the showerisithe logarithm of the virtuality or transverse
momentum in a splitting. (In BRwIG, the shower time represents the energy of the mother panes t
the square of the splitting angle. In order to cagiRwIG into the form presented here, one also needs
a cut on virtuality such that splittings with too small viality are not allowed. In other parton shower
algorithms, there is also a smallest virtuality allowedt that can be obtained by simply stopping the
shower evolution at some point.)

The evolution starts with the hard process and works forwaphysical time for final state evo-
lution and backwards in physical time for the evolution & thitial state. Thus we take the shower time
for a splitting{p, f, c}m — {p, 1, ¢}m1 to bet = t({p, 1, ¢}m+1) Where, for instance if andyj are the
daughter partons ar@ represents the virtuality scale for the hard process thatssthe shower,

T Q* )
t s JsCrm =lo - . 138
(0. f.hoet) = og (- (138)
It can, and should, be debated whether there is a prefermdecfor the shower evolution variable and,
if so, what it is.

Using this notation, we can represent what a typical patamwer Monte Carlo does. This repre-
sentation is an approximation to what real computer coded\oassume that each stage of evolution
is independent of what happened at previous stages, deweimditead only on the shower timeand
the partonic state at that stage. This is not the case if nitance, we do not exactly conserve four-
momentum at each stage and then adjust the parton four-ntamethe end.

If we start with a particular basis stdt@;, 1, c}m) at shower time,, then at a later tim¢ we get
a state related tb{p, 7, c}m) by an evolution operatd (', ty). In the notation of conventional parton
showers, based on collinear DGLAP splitting kernels, thienfof the evolution operator would be

Ut to |{P7f C}m) = At to; {p, f, c}m) |{P7f C}m)
t Zmax( t1) .
+Z / dtl tlath{pafac}m / k/d(ZS as Z—>]k( )u(t/atl)‘{ﬁvfaé}erl) ) (139)

.7, k to mm(tl) 27T 27T

wheredt; = dQ?/Q? is the differential of the evolution variable,is an energy-momentum sharing
fraction, P(z) are the DGLAP splitting kernels, and we include an integvar@ngle that is usually uni-
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formly distributed. Once the algorithm picks which partgtits, the flavors, and the splitting variables
t, z, ¢, the new statép, f, ¢}n+1 is known. Reformulating Eq. (139) in the notation outlinddee, the
second term changes appearance slightly,

u(tl7 tO)Hpﬂ f7 C}m) = A(tlﬂ t(); {p7 f7 C}m)‘{p, f: C}m)
+ /tdtl Aty to; {p, f; ¢}m)

x / % ({5, /. Stma[Ha(t) {p, f, ) U 11) [{B, £ )

(140)

In either notation, the second term represents that at aestiiwe ¢, > ¢, the first splitting occurs.
This splitting time is determined on a probabilistic basist; is integrated over. The probability to get
a particular statép, f, ¢}.,+1 IS given by

(B, f. | Hat) [ {p, £ Im) (141)

where’H; is the splitting operator, analogous to the interactionitiaman in quantum mechanics. There
is an integration over the possible outcorr{ésf, ¢}m+1. The requirement that the splitting at shower
time ¢; be the first aftet, means that we must include the probability that there is mieeaplitting.
This “no-branching” probability is given by a function (tleidakov form factor)

Aty to; {p, frctm) - (142)

In a lowest order shower, this function is fixed so that théoplmlity not to split in shower time interval
dt1 is 1 minus the probability to split,

A(t17 tO;{pv f7 C}m) -

t 1 o . (143)
exp <_ /to dr m / [d{pv fa C}erl] ({pa fa C}m+1‘HI(7—)’{p7 fa C}m))
The last ingredient in line two of Eq. (140) is the evolutiopecatorl{(t',¢;). This says that further
splittings can happen, in the same way, once the first sygitias occurred. It can also happen that there
is nosplitting generated between shower timgandt;. This is represented in the first term of Eq. (140).

Evidently, the main content of a parton shower resides ingéreeratorH;(¢) of the evolution.
This has two main parts: a splitting function and a momentuapping.

Consider first the splitting functions, functions of the dhater parton momenta that give the prob-
ability to split. If a parton splits into two nearly collinepartons, then the splitting function must match
the probability given by Feynman graphs in the collineartlinf-or the moment, we discuss a spin
averaged, leading color shower. Then the splitting fumctitatches the result from Feynman graphs
averaged over the mother parton spin and summed over thé@auspins in the approximation of ne-
glecting contributions that are suppressed ¥ 2, whereN, is the number of colors. When the emitted
parton is a soft gluon, the splitting function should matieé probability given by Feynman graphs in
the limit p,,+1 — 0. Away from the soft and collinear limits, however, one cana$e what functional
form to use and one can debate the merits of different choices

This can be illustrated by the case ofNCIA [325], which represents a new development and is
discussed in more detail later in this section. In a leadimgoshower in the leading color limit, the
fundamental object that emits gluons is a color dipole, ihatiwo partons, sayandk, that are color-
connected (i.e., adjoining on a color string). The basiaidere goes back to the Lund dipole [326],
implemented in RIADNE [327]. (We shall henceforth refer to such showerdigsle-antennahowers,
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in order to disambiguate them from what we shall galititioned-dipoleshowers below.) The relevant
Feynman graphs in the amplitude are those in which the gluer is emitted from partohand those in
which it is emitted from partoi. In the squared amplitude, one has a contributigrcorresponding to
the square of the graph for emission fréma similar contributiork-%, and two interference contributions
I-k andk-1. The approximation of keeping only the leading color cdmition restricts us to the case that
[ andk are color-connected. In dipole-antenna showers, eachediptreated as a unit, an antenna that
radiates gluons, and the splitting functions can be choseln as to match the perturbative result in all
the relevant limits, i.e. gluom + 1 collinear tol, collinear tok, or soft. There are two main differences
between UNCIA and ARIADNE (and also a recentfRPA implementation [328]). The first is that an
explicit possibility to vary the shower ambiguities awagrfr the singular regions is retained inNCIA,
and the second is that it combines the original dipole shovitrthe antenna subtraction formalism of
Refs. [312, 314, 315] to match to fixed-order matrix elements

Another new development is what we can call gaetitioned-dipoleshower [329, 330], which is
discussed in more detail later in this section. Here onétjmans the splitting function into two parts. One
part contains the singularity corresponding to parion- 1 being collinear with partohand part of the
soft singularity. The other part contains the singulardgresponding to partom+1 being collinear with
partonk, along with the remaining part of the soft singularity. Awagm these singularities, one has a
choice. A sensible choice (as suggested in Ref. [331]) iake the splitting functions to be precisely
those defined by the Catani-Seymour dipole subtractionnselj&65] that is widely used for next-to-
leading order perturbative calculations. This has the iatdge that it should be fairly straightforward
to match these NLO calculations to a Catani-Seymour dipadsver. It has the disadvantage that the
splitting of the emission probability from a dipole antenmi@ two parts is perhaps a bit artificial. There
is more than one way to accomplish this splitting.

The second part of the generafdf(¢) of shower evolution is the specification of the momentum
mapping. In Eq. (140), there is a nominal integration over tomenta of all the partons after the
splitting. However the matrix element &f;(¢) contains delta functions that, for given starting momenta
{p}m, restrict the new momentg},,,1 to lie on a three dimensional surface. This surface could be
parametrized by splitting variablész, ¢, as in Eq. (139). In the case of the timelike dipole-antenna
showers in RIADNE, VINCIA, and SHERPA, the momenta of all of the partons not part of the dipole
remain the same before and after the parton emission. Fqatttens! and . that form the dipole, the
momentgy; andp,. plus three splitting variables are mapped reversibly tovibenenta of three daughter
partonsgp;, px, andp,,1 after the splitting, with all of the parton momenta beingsrell. This mapping
is symmetric under label interchanfe~ k. In the special case that, 1 is collinear withp;, we have
pr = Pr + Pm+1 @ndpx = pi. Similarly, if p,,11 is collinear withpy, we havep, = pr + Pmr1
andp;, = p;. In the soft limit, p,,..1 = 0, we havep, = p; andp, = pr. Away from these limits,
the mapping is necessarily not so trivial, leading to a ferthon-singular ambiguity which MciIA
attempts to explore. For the partioned-dipole showergtiera similar but simpler mapping, this time
not symmetric undef <~ k. The splitting function that includes the singularity &5 1 collinear with
p1, comes with a momentum mapping for whigh= p; + p,,+1 andp, = pr. whenp,,+1 is collinear
with p; or soft. Away from these limits, the mapping takes some maormarfrom partonk in order
to keep momentum conserved and all partons on shell. Theelheaire is to use the same momentum
mapping as was defined by Catani and Seymour for the sulsinaéti next-to-leading order calculations.
In the case of splittings involving an initial state sphti(spacelike showers), the momentum mappings
are a little more complicated than sketched here. We shoalttion that it is also possible to take the
momentum needed to keep all partons on-shell fadirof the final state partons in what might be called
a democratic way [324].

We hope that this comparative discussion may be useful agda ¢uthe more detailed presen-
tations later in this section. We may also mention the pbbliswork [324] that was discussed at Les
Houches but is not separately presented in this documeitidda here is to extend the idea of a lead-
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ing order parton shower so that one doesaverage over spins or take just the leading color limit. In
this case, there is an evolution equation similar to Eq. b4 with spin indices and a more detailed
specification of the color state. The solution of the evolutequation yields integrals that could, in
principle, be computed numerically. However, an algorithit is likely to be usefully convergent with
finite computer resources is still under development [332].

17. TIME-LIKE SHOWERS BASED ON DIPOLE-ANTENNA RADIATION FU NCTIONS 30
17.1 Introduction

In this report we take the next step in the development of tinecVA shower towards a full-fledged parton
shower, embedded into therPHIA 8 generator [325, 333]. Previously, we included only theogla
time-like shower [325]. By including massless quarks westant making comparisons at LEP energies
and make quantitative studies for future linear collidefs the VINCIA shower is a dipole-antenna
shower, we can make direct comparisons with the dipoleramatéunctions used in RIADNE [327].

We also make a phenomenological comparison with theHPa 8 shower. For this purpose, we
choose the evolution variable, the hadronization boundad/other parameters inINCIA as close as
possible to the default YHIA 8 settings. In this emulation mode we compare a few reprateat
distributions, both infrared safe and infrared regulatbgenvables, such as jet rates, thrust, and parton
multiplicities for hadronicZ decays at/s = m.

17.2 Dipole-antenna functions

The most general form for a leading-log antenna functiomiessless parton splittingh — arb, can
be represented by a double Laurent series in the two bragghiariants,

1 (0. 0]
a(Yar, Yro; 8) = > Copys vy (144)
a,f=—1
where
8§ =S, = Sarb and Yij = S% <1 (145)

are the invariant mass squared of the antenna and the scaleching invariants, respectively. In prin-
ciple, eq. (144) could also be multiplied by an overall prgsace veto function, restricting the radiation
to specific “sectors” of phase space, but we shall here usaltd “global” antenna functions which

are summed together without such cuts. Note that we havearéten the antenna function stripped of
color factors, to emphasize that this part of the discussioot limited to the leading-color limit.

The coefficient of the most singular terd,; _;, controls the strength of the double (soft) sin-
gularity (the “double log” term) and the coefficierds ; ;>0 andC;>o,—1 govern the single (collinear)
singularities (“single log” terms). These, in parton showsrminology collectively labeled “leading
log” terms, are universal, whereas the polynomial coefiitsi€’;> ;>0 are arbitrary, corresponding to
beyond-leading-log ambiguities in the shower or, equiviye different NLO subtraction terms in the
fixed-order expansion.

We take the Gehrmann-de-Ridder-Glover (“*GGG”) antennations [315] as our starting point.
The corresponding coefficients, s for the the five antennae that occur in massless QCD at LL are
collected in tab. 11. For reference, we also compare to ttatian functions [326, 334, 335] used
in the ARIADNE dipole shower [327], which are also the ones used in a re¢edy $y the $IERPA
group [328]. Note that the single log terms have a slight giiby when gluons are involved, arising
from the arbitrary choice of how to decompose the radiatifirttee gluon into the two antennae it

30Contributed by: R. Frederix, W.T. Giele, D.A. Kosower, FSkands
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Co11|C1pg Co1 Coqn Ci1 Coap Cyi | Coo Cip Cog
GGG
qq — q9q 2 -2 -2 1 1 0 0 0 0 0
49 — 499 2 -2 -2 1 1 0 1) 2 4 3
99 — gqgg 2 -2 -2 1 1 -1 -1 e -1 -1
q9 — q7'q 0 0 : 0 -1 0 1 % 1 0
99 — 94q 0 0 5 0 -1 0 1] -1 1 i
ARIADNE
qq — q9q 2 -2 -2 1 1 0 0 0 0 0
q9 — qqg 2 -2 -3 1 3 0 -1 0 0 0
99 — 9gg 2 -3 -3 3 3 -1 -1 0 0 0
q9 — q7'q 0 0 : 0 -1 0 1] -1 1 :
99 — 9qq 0 0 5 0 -1 0 1| -1 1 3
ARIADNEZ (re-parameterization of &AADNE functionsa la GGG, for comparison)
qq — q9q 2 -2 -2 1 1 0 0 0 0 0
q9 — q9g 2 -2 -2 1 1 0 -1 -1 0 0
99 — 999 2 -2 -2 1 1 -1 1 -2 1 4

Table 11: Laurent coefficients for massless LL QCD antenfe< arb). The coefficients with at least one negative index
are universal (apart from a re-parameterization ambiduoitygluons). For “GGG” (the defaults in McIA), the finite terms
correspond to the specific matrix elements considered i6][3h particular, the;g antenna absorbs the tree-level— qgq
matrix element [316] and thgy antennae absorb the tree-ledél — gg — ggg andh® — gg — ggq matrix elements [318].
Thegqg antennae are derived from a neutralino decay process [317].

participates in. Nominally, the AIADNE single log coefficients therefore look different from the GG
ones. However, a re-parameterization of the total gluoratiash, which we label RIADNE2, reveals
that the only real difference lies in the choice of finite terminterestingly, while all the RIADNE
radiation functions are positive definite, the equivalemi#DNE2 one forgg — ggg is not and hence
could not be used as a basis for a shower Monte Carlo.

In modern versions of RIADNE, gluon splitting to quarks has an additional pre-facpfl +
5.1/ 532)» Wherec is the neighbor on the other side of the splitting gluon. Thisased on comparisons
toete™ — q¢'q'q matrix elements and implies that the smaller dipole takesatyer part of the — ¢g
branching. Such effects are not included iNZIA at this point.

Our convention for color factors is that they count colorrees of freedom. Their normalization
should therefore be such that, in the laye-limit, they tend toN raised to the power of the number

of new color lines created in the splitting. In particular,
NZ—1

Ciy = Ne

(146)

L wloo

For gluon splitting to quarks, the antenna shower explictims over each flavor separately, hence the
relevant antenna functions should be normalized to onerfldyo= 1. (We use the hatted symbais-
and 7' to distinguish this normalization from the conventionaitpa-shower one in whicli’y = 4/3
andTr = 1/2))
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The complete antenna functions, in the notation of [325, @)sand (11)], are then

) = d4mas Cr a(qq — 499) ,

) = 4dmwas Cralqg — qg9)

A(gg — g99) = 4mas Nealgg — gg9) , (147)
)
)

~

Alqg — q7¢) = 4masaleg — q7'd),
Algg — 94q) = 4masalgg — 94q)

whereas = as(ugr) may depend on the branching kinematics. If so, we use a norina- 1 for
generating trial branchings, which are then accepted withability o5 (1) at the point when the full
kinematics have been constructed (see below). The passibibr .z currently implemented in WCIA
are

typeO : Kgr2p,
pr=1+4 typel : KrQg (148)
type2 : Kgr /5,

where Kr is an arbitrary constangy, is defined as in RIADNE with pi = SarsSrb/ 8,5 [327], Qp is

the evolution variable, angd/s;; is the invariant mass of the mother dipole-antenna. Theuttefaa
1-loop running five-flavorvs with ur = p, (i.e., Type 0 above, withp = %) andas(myz) = 0.137
(the default in RTHIA 8, making comparisons simpler). Alternatively, both fixedl &2-loop running
options are available as well [333]. For the pure showerdtpendence on the renormalization scheme
of o, is beyond the required precision and hence we do not insiah®S definition here. Indeed, the
default value ofxs(myz) in PYTHIA 8 is determined from tuning to LEP event shapes. Though likyon
the scope of the present paper, we note that in the contexgbé&horder matching, one should settle
on a specific scheme, and should then see the dependencendhdetheme and scale choices start to
cancel as successive orders are included.

17.3 Shower implementation

Brief descriptions of the WcIA switches and parameters are contained in the program’s Xfkhn*
ual”, by default calledvi nci a. xm , which is included together with the code. This file also aeorg
the default values and ranges for all adjustable parametbish may subsequently be changed by the
user in exactly the same way as for a standarddH?A 8 run [333].

The default antenna functions are contained in a separate fk®) Ant ennae- GGG, xm . An-
tennae that are related by charge conjugation to the ored tigb. 11 are obtained by simple swapping
of invariants (e.g.gq antennae are obtained from the ones). Similarly, antenna functions that are
permutations of the ones in tab. 11, suclyas— gqg, are obtained by swapping. In view of the prob-
abilistic nature of the shower, all antenna functions areckld for positivity during initialization. If
negative regions are found, the constant téfy is increased to offset the difference and a warning is
given, stating the new value 61 .

We use the PTHIA 8 event record [333], which includes Les Houches color t&886[337] for
representing color connections. At every point during theng evolution, leading-color antennae are
spanned between all pairs of (non-decayed) partons forwhicolor tag of one matches the anti-color
tag of the other.

Shower generation proceeds largely as for the pure-gluse dascribed in [325], including the
choice between two evolution variables

. . 2 Q% . SarSrb
type | (p, -ordering) L= = 4 o 4YarYro
YE = 9 . (149)
type Il (dipole-mass-ordering): »% = -1 = 2min(yar, Yrs)

S
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Note that we do not include an “angular-ordering” option.comnventional parton showers, which use
collinear splitting functions, angular ordering gives ad@approximation of the coherent dipole radiation
patterns we here describe by the antenna functibnsSince dipole-antenna showers us$dlirectly,
coherence is thus independent of the choice of evolutioiamarto first order in this formulation (see,
e.g., [326]).

For the phase space map an optimal choice for the functiamad bf the “recoil angle™;,
(see [325,327]) away from the soft and collinear limit exif&ir ¢ antennae [338]. However, we have
not yet implemented this particular subtlety in theN@iA code. The default choice for all antennae is
thus currently the same as for the — ggg splitting in ARIADNE [327]

E2
YARIADNE = 7E2 n Eg( —Oap) (150)

with alternative choices listed in [325].

Trial branchings are generated by numerically solvingy e in the equationR = ﬁ(ytrial),
whereR is a random number uniformly distributed between zero arej and the trial Sudakov is [325,

eg. (51)]

N 1=Yar A Yar, Yrb
A(ytrial) = €Xp [ - / dyE /dyar/ dyrb 5 yE - yE(ya'ra yrb))% 5 (151)
Ytrial

with A an overestimate of the “true” antenna function such that

A(yarv yrb) = SarbA(yara Yrbs Sarb, 1) > SarbA(yam Yrbvs Sarb, 1) (152)

only depends on the rescaled invariants (for instance Imgusfixed overestimate af; = 1 here). Once
the full kinematics are known (see below) the trial brangthéan be vetoed with probability — A/ A,
which by the veto algorithm changes the resulting distidsuback to that of4, as desired.

During program execution, cubic splines Afand A~! are used for the actual trial generation.
These splines are constructed on the fly, with the 2-dimeasjghase space integrals in eq. (151) carried
out either by 2-dimensional adaptive Gaussian quadraA®€) on A directly or (substantially faster)
by 1-dimensional AGQ on the primitive function along a cantof fixedy,,., defined by

b2 A(yarayrw
Lo(Yars y1,92) = /yldyrbw
. B+l B+l
asCi =~ o Y2 = Yo — )
= — 11 Copg=——""— 153
GOSN G () + S0 asy

a=-—1

=0

whered; is the overestimate af; discussed earlief,; represents the color factors appearing in eq. (147),
and the phase space limijg, depend on the choice of evolution variable, see below. Qunitializa-
tion, the program checks for consistency between the d@oalptd numeric integrals and a warning is
issued if the numerical precision test fails.

The antenna with the largest trial scale is then selectefdiftirer inspection. A angle distributed
uniformly in [0, 27] is generated, and a complementary phase space invarjasithosen according to
the probability distribution

# A anrs T
Liys,2) — / 42| (g, )| A U) - (154)
Zmin(yE) 167T

where|J (yz, )| is the Jacobian arising from translatifg,, y,, } t0 {yr, z} andzmi, (y£) is the small-
est valuez attains inside the physical phase space for a givenDepending on the type of evolution
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variable, as defined in eq. (149), we choése, z } (yar, yrb) @S

typel Y& =4Yaryrs, 2= Yrb
S 1= 1/(42)  Zmcmin(0E) = 51 % /T 55). (159
typell ' yp=2yar, 2=y forz<1-jyp
e =2 2= Yar + (1= 2yn) fOr 2 > 1 — yp
Sl = 172, Zmin(0p) = 20 Zmae(E) = 2 oy (156)

where, for type I, we have arranged the two separate branghe< y,, andy,, < y, One after
the other by a trivial parallel displacement in theoordinate. Using the Laurent representation of the
antenna functions, the analytical formsigfbecome

asCi = (YR\® 2 27 — zmin(yp)®
typel : —— = Coaqln —— 157
P 167 a;1 ( 4 ) it Zmin(YE) + ﬁ;é B —a (157)
asC; 1 .
typell : —— [Ia <§yE, Zmin(YE), min(z, 1 — Zmin(yE))>
1
+1F <§yE, 1 — zmin(yp), max(z, 1 — Zmin(yE)>:| ; (158)

where thel, is defined in eq. (153) antf is the primitive along a direction of fixeg.,

a+1 a+1
] (159)

(e.¢]
Y2 Yo  — U
C_1pln| = Cop=——""F7"—

a=0

[e.9]
IaT(yrb73/1,y2) = Z yrﬁb
p=-1

17.4 Numerical results

We now turn to a quantitative comparison betweerTiPA 8 and MNCIA for ete™ — Z — qq at

/s = mz. We use a 1-loop running, with as(mz) = 0.137 (the defaultin RTHIA 8), with a 5-flavor
running matched to 4 and 3 flavors at theand ¢ thresholds, but to eliminate the question of explicit
quark mass effects we only allow and v quarks in theZ decay and subsequent shower evolution.
The evolution is terminated at; ., = 0.5 GeV, and we have switched off hadronization so as not to
unintentionally obscure the differences between the partevolutions. Likewise, photon radiation is
switched off in all cases, and invPHIA 8 we further switch off gluon polarization effects. FONCIA,

we use three different settings: transverse-momentunriogleith “GGG” antenna functions, dipole-
mass ordering with “GGG” antenna functions, and transvaerseentum ordering with the “AIADNE”
antenna functions.

Fig. 31 shows the 3-, 4-, and 5-jet inclusive fractions asfiams of the logarithm of Durharky,
using the default PTHIA 8 Durham clustering algorithm [333]. InY®HIA 8, the 3-jet rate (the set of
curves furthest to the right) is matched to the tree-levedBon matrix element, whereas the GGG and
ARIADNE antenna functions in MicIA reproduce it by construction. The general agreement on-jee 3
rate is therefore a basic validation of g — ¢gg antenna implementation. Higher-order effects appear
to make the mass-orderedNCIA slightly softer, which we tentatively conclude is due tcsthariable
favoring soft wide-angle radiation over high- collinear radiation (as illustrated by fig. 2 in [325]).

Similarly, the 4-jet fractions (the middle set of curves ig. f81) test theyg antennae in YNCIA,
with the GGG showers here slightly higher and theiADNE one slightly lower, in agreement with the
differences ingg antenna finite terms, cf. tab. 11. This trend becomes moneopred in the 5-jet
fraction, since also theg — ggg function in ARIADNE is softer than GGG.
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Fig. 31: Inclusive 3-, 4-, and 5-jet fractions.

We may now study further distributions, as a representaiample of which we take thrust,
illustrated asl — 7" in the top row of fig. 32. The full distribution is shown to theftl with a closeup
of the regionl — 7" < 0.1 to the right. The region.1 < 1 -7 < % is dominated by well-separated
three-jet configurations. In the tail,— 7" > % a matching tee"e~ — 4 jets would be required to
improve the accuracy. In the region belaw- 7" = 0.1, however, this would not help. These are three-
jet configurations which are “nearly two-jet”. Here, the ¢ypnd size of the Sudakov suppression is
essential, the first fixed order of which could be accessedlopd matching, but since the fixed-order
expansion is poorly convergent in this region anyway, tisaglieement is more likely to be cured by a
systematic inclusion of higher-logarithmic effects in gtewers (either implicitly, by “clever choices”
of evolution, renormalization, and kinematic variableghie LL shower, or explicitly, by a systematic
inclusion of NLL splittings). It should be noted, howevdrat hadronization and hadron decay effects

are important in the region below

(A few GeV)?
2

my

1-T ~1—max(x;) =min(y;;) < <0.01, (160)
where thexr andy fractions pertain to 3-jet configurations. This complicatiee separation of genuine
non-trivial higher-log effects from non-perturbativeasfts when comparing to experimental data at cur-
rently accessible collider energies.

Finally, as illustration of an infrared sensitive quantity the bottom row of fig. 32 we plot the
probability distribution of the humber of partons produadhe shower termination for each of the
four models. The total number of partons is shown to the ledt #tne number of quarks (not counting
anti-quarks) to the right. The definitions pf in PyTHIA and in VINCIA/ARIADNE, respectively, are
not exactly identical, but they have the same infrared iimgibehavior [339], and hence a comparison
of the number of resolved partons with a cutoffpat,.q = 0.5 GeV should be meaningful. Since we
have also chosen the sameg values etc., the basic agreement between the models inweez left-
hand plot in fig. 32 reconfirms that there are no large diffeesnbetween the showers, even at the
infrared sensitive level. RAIADNE produces somewhat fewer partons, consistent with tReABNE
radiation functions being slightly softer. On the rightadgplot, however, it is interesting to note the
first substantial difference between B11A 8 and the \INCIA showers. The PTHIA shower produces

92



F T T T T T T T T T T T T T T T T T T T T F 20 | |
o 10y 1 2 | Z-qq 1
g F \ ] g F Vincia 1.005 + Pythia:8.100 1
© i 1 © + i
z | \ | €15
= 1 E 1 — + i
I ] 10
107 E \\ E 3 1
' Z-qQ ] L |
[ Vincia 1.005 + Pythia 8.100 ] _ ]
10'2 E ——"Pythia E 5 [~ —— Pythia i
Eoe Vincia (pT-ordering) ] IRREEEEEES Vincia (pT-ordering) R W
N Vincia (mass-ordering \ g Lo Vincia (mass-ordering) 1
i Vincia (Ariadne) \s ] L Vincia (Ariadne) i
-3 L1 L1 L1 L1 LT N | L L L L L L L L L L L L
1079 0.1 0.2 0.3 04 0.5 0 0.02 0.04 0.06 0.08 0.1
1-T 1-T
’2 ' ’2 L I I ]
= | Z-qq | = [ Z-qq (n=2) ]
5 | Vincia 1.005 + Pythia 8.100 1 3 Vincia 1.005 + Pythia 8.100
S T Pythia 1 8 1F .
o Y s Vincia (pT-ordering) 2 ST ]
o PO LS Wt Vincia (mass-ordering) o B b e s o rom mn o ]
' | Vincia (Ariadne) | i
B 7 10-1 ? [Reretetelelpelfpelitigl’ E
0.05 I ':.':.':,':.':.':,':.':.':
u A = —
i 1 10 F —— Pythia ]
- I Vincia (pT-ordering) i
B ’ - Vincia (mass-ordering) 1
3 e i A I Vincia (Ariadne) ]
n 1 ! ! Lo _3 IR T R N P P
%o 10 20 30 10 1 2 3 7]
Npartons Nquarks

Fig. 32: Top row: Thrust] — 7". Bottom row: Number of partons (left) and number of quarkght) at shower termination,
with 2 massless quark flavors.

significantly fewer quarks than any of thaNCIA showers, despite its being higher or comparable on
the total number of partons (cf. the left-hand plot). A samitlifference between parton and dipole-
antenna showers was observed in an earliRrANE study [335], in which a comparison was made to
the virtuality-ordering of traditional parton showersidinteresting that we here observe the same trend
when comparing to theYArHIA 8 shower which is ordered jm, . Finally, we note that this difference will
also have practical consequences; in the context of turfihgdronization models, theMciA showers

will presumably need a stronger suppression of hon-peativdstrangeness production to make up for
the larger perturbative production rate, as comparedrtcHia 8.

17.5 Conclusions

We have presented the inclusion of massless quarks intoithel¥ shower algorithm, implemented as a
plug-in to the R THIA 8 event generator. The dipole-antenna radiation functoaexpressed as double
Laurent series in the branching invariants, with user-$jpdde coefficients. At the analytical level,
we compare the coefficients of the “GGG” antenna functiorib]3ised by default in YNCIA to the
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ARIADNE ones [327]. Modulo a re-parameterization of emissions fghumons, we find the double and
single log coefficients to be identical, as expected. Theefitdrms, however, are generally somewhat
smaller for the ARIADNE functions. This represents a genuine shower ambiguity wban only be
systematically addressed by matching to fixed-order mataments.

At the phenomenological level, we have also compared to yteidh parton-dipole shower in
PYTHIA 8 [333]foreTe™ — Z — qq aty/s = mz. We find a good overall agreement, even at the level
of an infrared sensitive quantity such as the final numberdigms. For the number of quarks produced,
however, RTHIA 8 is markedly lower than any of theINCIA showers we have compared to here.
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18. LLL SUBTRACTION AND PS KINEMATICS 3!
18.1 Introduction

We are developing NLO event generators for hadron colligiteractions based on GRACE [340], using
the Limited Leading-Log (LLL) subtraction technique [34fbf the parton radiation matching. The
matching technique is crucial since the contributions oddditional QCD parton radiation in NLO are
also involved in the evolution of Parton Distribution Funas (PDFs) in a collinear approximation. A
naive application of a PDF to NLO calculations results in ppaaent double-counting. We avoid the
double-counting by subtracting Leading-Log (LL) collineantributions from the matrix element (ME)
of radiative processes. The subtraction is stopped (‘$idiitat the factorization scale:f) since PDFs
do not involve any radiation harder than this energy scake OL contribution of the radiation is easy
to calculate [342], though an appropriate care is neces$sdhe kinematical mapping to non-radiative
processes [341]. The subtracted LL terms are formally mdweedon-radiative processes and to be
cancelled with divergences in virtual corrections.

Figure 33 shows the sum of the total cross sections for in&U& -boson production and LLL-
subtractedV + 1 jet production evaluated for the LHC condition (protaipn collisions at/s = 14
TeV). Here, "jet” denotes a gluon or a light quark in the finits. The cross sections are calculated
using the tree-level MEs fdi” production andV + 1 jet production, respectively, convoluted with the
CTEQS5L PDF [343]. Results are shown as a function of the fazdtion scale ). We can see a strong
wr dependence of the inclusiv& production cross section (open circles) is greatly redigeddding
the LLL-subtracted radiative cross section. This showsalgoatching between the ME and PDIE,
the LL contents in ME and PDF are nearly the same.

The virtual corrections are yet to be included in the resstigwn in Fig. 33. They can also be
evaluated automatically in the framework of GRACE [342]v&pent terms in these corrections are to be
cancelled with those moved from radiative processes. Reénggfinite terms will alter the normalization
of non-radiative processes, and will result in a substhntiamatch since there is no such correction
in radiative processes. However, this mismatch is at thel leNNLO. It will be possible to restore
the matching within the accuracy of NLO. The simplest way lddae to change the normalization of
LL components of the hard radiation remaining in radiativecgsses by the same amount as applied to
non-radiative processes. This is actually a modificatich@NNLO (2) level.

So far we have discussed the matching in the integrated seas®n. We have to achieve a good
matching in differential cross sections, as well, in orderdnstruct practical event generators. The QCD

3lContributed by: S. Odaka
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Fig. 33: Factorization-scalg:{) dependence of the total cross section for Wieboson production at LHC. An apparent
ur dependence of the inclusii@” (1 + 0 jet) production cross section (open circles) is greatuced when we add the
LLL-subtractedi’ + 1 jet production cross section. The summed cross sectiershawn with filled circles.

evolution evaluated in PDFs is simulated by means of a patiower (PS) in event generators for hadron
collisions. PS and PDF are based on the same factorizagomthHowever, since theoretical arguments
are given only at the collinear limit, the theory gives usdicgons only at the first-order approximation
for the transverse behavior. It is necessary to introduceadeinof 3-dimensional kinematics in order
to construct a practical PS conserving the energy and m@né&he introduction of a suitable model is
crucial for achieving a good matching in differential crgsstions. We discuss about such models in the
following sections.

18.2 Initial-state PS kinematics

We have constructed an initial-state Leading-Log (LL) P&pam for the use in NLO event generation.
The program is based on the simplest expression of the LLKswdarm factor employing)? as the
evolving parameter,

Q% 102 [l 9
5(02,03) = exp [_ 10 [ g, @)

2
@ @ 2

The details are described in our paper [341]. We stay in aendivimplementation without introducing
corrections partially incorporating higher order effestsch as the angular ordering, because we plan to
extend our PS to a true Next-to-Leading-Log (NLL) approXiiow[344].

We first tested the kinematics model employed in the "old” AYA+PS [345, 346], since the
theoretical bases is nearly the same. We found this modes$ giwery soft transverse activity. It results
in an apparent mismatch in the transverse momengyh distribution of W bosons, when we tried to
merge the inclusivél” production with the LLL-subtracted” + 1 jet production by applying this PS to
both processes. The starting assumptions of the "old” PYHFE kinematics are that theparameter
of a branch is the ratio of squared cm energies after and déefach branch instead of the fraction of
light-cone momenta, and that tiig? is identical to the virtuality of the evolving partons. Thesfi
assumption requires the definition of a "target” parton;sthitiis model dependent. However, this
definition ensures a simple relation between squared cngieseof a hard interaction and the beam
collision; spard = T1228Heam Wherex; andxz, are given by the product of all values in each beam.

P(z)] . (161)
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From a simple kinematical argument we found this model gasesdation,
pr = (1-2)%Q% (162)

for each branch at the soft limit [341].

On the other hand, ordinary arguments based on the maspl@sxanation give a slightly differ-
ent relation,

pr = (1-2)Q? (163)

at the soft limit. Apparently Eq. (162) gives a smaltervalue than Eq. (163) for a given set@f and

z. The relation (163) must be better for the matching sinceres partons are nearly massless in ME
calculations. We have introduced a new kinematics modeteyheof each branch is given ("prefixed”)

by Eg. (163). We keep the definition of thgparameter. The momenta of evolving partons are calculated
from thispy value and the value. Thus, the virtuality is not necessarily equal to@Ref a branch. This
new PS gives a hard& -bosonp; spectrum than the "old” PYTHIA-PS in the inclusiV& production
simulation, showing a better matching to the LLL-subtrddfé + 1 jet simulation. The sum of the two
simulations gives a smoofiy spectrum stable against a variation of the factorizati@hes: ) [341].

After the submission of the paper [341] we tried another d@fimof the "prefixed”pr,
pr=(1-2-Q*/3)Q% (164)

The parametet is the squared cm energy before the branch. This is the refsthle massless approxi-
mation of branching kinematics before taking the soft lig@t /s — 0). This definition is ugly in some
sense since is model dependent, but gives us a better matching than B§).(We plot the summegr
spectra ofii’-bosons for three differenty values {1 /my = 0.5, 1.0 and 1.5) in Fig. 34. We can see
almost no variation of the spectrum except for a small déffere arounghy, = myy in this up range.

18.3 Prospects for the final-state PS matching

It is enough to consider the initial-state matching if we semirate ourselves to NLO corrections for
color singlet or heavy particle productions. However, oweego to NLO for those processes having a
gluon or a light quark ("jet”) in the final state, we also needbnsider the matching in the final state.
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We plan to use a simple LL parton shower employiptjas the evolving parameter also for the
final state. We need to introduce an appropriate kinemataxeirto this PS, too. In the initial-state PS,
models in which the definition gf; precedes that @p? give us a better matching as we have discussed in
the previous section. This is becayseis in principle an observable quantity whilg? is not physically
well-defined for initial-state partons. Similar argumesti®uld be done also for the final state.

In the final state, the virtuality is in principle an obserleaas an invariant mass of particles even
after the hadronization and decays. Therefore, it must heralao identify@? as the virtuality of the
evolving partons. The transverse momentym)(is also an observable in principle. Thusshould
be treated as an unphysical parameter. It should be usediddemtparameter only to giver values
according to the relation,

p2T =z(1- Z)Q2. (165)

In this kinematics model, PS is a process to give final-stat®ops additional masses equal to §reof
their first branches. The invariant mass of the hard intemadystem should be unchanged even after
the application of PS, since it is a very fundamental paranfet the evaluation of matrix elements. We
also want to keep the production angles in the cm frame urggthrThese requirements can be fulfilled
by introducing a common multiplication factor to the monweat all final-state particles.

We need to apply a proper mapping of non-radiative subsystemadiative event to an on-shell
non-radiative event in the LL subtraction. A mapping usingnmenta of the branched parton and the
target parton works well for the initial-state radiatiod 3. The subsystem is boosted and rotated to its
cm frame where the momenta of two incoming partons are aigiheng thez axis. This is the process
exactly reversing the kinematical rearrangement in otiairétate PS.

The mapping should be done in the same concept also in thestiami@, exactly reversing the
rearrangement in PS. It can be done as follows: pick up atrarpipair of final-state partons. If they
can be considered as products of a PS branch, replace tharntheiparent parton having the invariant
mass of the pair as its virtualityQ?). If not, skip this pair. Rescale the momenta of all partdie
the cm frame with a common factor to make the replaced pamatdmbecome on-shell. Evaluate the
matrix element of the non-radiative process based on tleeseanged momenta, multiply it with the LL
radiation factor proportional tv/Q?, then we get an LL approximation of a final-state radiatiohisT
procedure should be applied to all possible combinatiomgihave more than two partons in the final
state.

We expect that the LL contribution can be evaluated in sugisgmatic way, including the initial-
state contributions, as well. All contributions should bensned to evaluate the total LL contribution. A
program is under development based on these concepts.

18.4 Conclusions

We have achieved a good matching between PDF and matrixealef®E) evaluations for the parton
radiation in NLO QCD corrections, by using the Limited LeaglLog (LLL) subtraction technique. It
has been demonstrated as a good stability ofitheroduction cross section against a variation of the
factorization scalei(r), where the total cross section is evaluated by the sum ofribes sections for
inclusivel production and the LLL-subtracté® + 1 jet production.

We have to achieve a good matching between the parton sh&\8grahd ME, as well, in order
to construct practical NLO event generators. The transvacsivity of PS depends on the applied kine-
matics model of parton branches. We have successfullydailitable model for our Leading-Log (LL)
initial-state PS, whergy is prefixed according to the relation in the massless appraton of branch-
ing kinematics. The simulation employing this PS shows adgmatching between the inclusivé
production and the LLL-subtracté®f + 1 jet production in the, spectrum oV’ bosons. The spectrum
is stable against the variation pf- in a wide range.
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It is necessary to achieve a good PS-ME matching for the §itadé radiation, as well, when we
construct NLO event generators for those processes imgjugiet(s)” in the final state. A study is in
progress for the final state based on the experience on tred-state radiation.
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19. A PARTON-SHOWER MODEL BASED ON CATANI-SEYMOUR DIPOLE FA CTORISA-
TION 32

19.1 Introduction

Parton-shower models form an indispensable building blfdlonte Carlo event generators, such as
Herwig [347], Pythia [348] and Sherpa [219], that aim at tealistic description of multi-particle final
states as they are observed in high-energy collider expetsnBy accounting for QCD bremsstrahlung
processes, parton showers relate a small number of pamoagyimg from a hard interaction, defined
at scale)y.-q and theoretically described through a fixed order calcufatio a larger set of partons
at scaleq), < Qnarq- The parton-shower approach relies on the universal patte@QCD emission
processes once soft or collinear parton kinematics areicdenesl. The soft and collinear phase-space
regions are singular and obtain large corrections orderrbdgran perturbation theory what makes an
all-orders resummation of the associated kinematicalrltgas essential. Most shower algorithms rely
on collinear factorisation of QCD matrix elements and a@gate to the leading-logarithmic level. The
Ariadne approach, however, is based around the soft liIB&E][

The parton-shower approach being perturbative it cann@xbended to arbitrary small scales but has

to be stopped at some infrared cut-off sc@le > Aqcp. Below that scale event generators model the
transition of QCD partons into the experimentally obsetvadrons through non-perturbative hadronisa-

tion models. In fact, only through the incorporation of parshowers these hadronisation models can be
made universal or independent of the underlying hard psoCEss, however, assumes that perturbative
QCD between scalgg,..q andQ), is appropriately described by the parton-shower model.used

In the past few years there have been lots of major improvesmelated to parton-shower Monte Carlos.
This includes the incorporation of exact multi-leg treeelematrix elements for the description of the
first few hardest emissions from a given hard process, kndwagix element parton shower merging”,
see e.g. [349, 350], or the consistent matching of nexe#éalihg order calculations with parton showers,
know as “Monte Carlo at NLO”, see for instance [35, 351]. Ini&idn the available shower algorithms
of Herwig and Pythia have been revised and improved [339, 352

Only very recently new shower algorithms emerged that asedban formalisms used to construct sub-
traction terms that allow for a numerical cancellation dfamed singularities in NLO QCD calcula-
tions [325, 328-331, 353]. There exist now implementatiohsuch shower algorithms for two com-
monly used subtraction schemes, the antenna subtractithhoch812] and the Catani—-Seymour dipole
formalism [165, 354]. Besides incorporating the last kremigle on the infrared behaviour of QCD ma-
trix elements, these models should largely facilitate tlaaming with NLO calculations carried out in
the respective scheme. In this note we briefly report on timstcoction of a parton-shower algorithm
relying on Catani—Seymour subtraction that has more eixtelgdeen presented in [329].

32Contributed by: S. Schumann, F. Krauss
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19.2 The shower model

The Catani—Seymour formalism provides all the ingredi¢mtsonstruct a local approximation to the
real-correction matrix element amy QCD NLO calculation. These subtraction terms, that can Ime co
structed in a process-independent way, possess exacigitineinfrared divergences as the real-emission
correction, such that the difference of the two is infraraddiand can safely be (numerically) integrated
in four dimensions. In addition, the subtraction terms da@sen such, that they can be analytically inte-
grated ind = 4 — 2¢ dimensions over the phase space of the produced soft aneatlparton that causes
the divergences. The occurringe? and1/e poles exactly cancel the ones from the loop integration in
the virtual part when adding the two pieces. Such, the CaBsymour method provides a way to con-
struct a parton-level Monte Carlo program for a NLO caldolad once the one-loop and real-emission
corrections to the Born process are known.

In the Catani—-Seymour approach the additional soft or reedli parton is emitted from an emitter-
spectator pair (called dipole). Considering both the emniiind the spectator to be either in the final
or initial state, four configurations have to be consideregyesenting the singularities associated to
emissions from the final or initial state. Labelling finadtt particles by, j andk and initial-state par-
tons bya andb the real-emission matrix element can always be approxunayethe sum over all the
possible dipoles,

Mim1? =D > Dyp+ [ D DL+ > D+ Zpai’b +(a—b)| . (166)

i k#ij i.j i ki

Hereby,D;; ;. describe splittings of a final-state partohinto the pairi, j accompanied by a spectator
k. Due to the presence of the spectator, four-momentum ceatg®m and on-shell momenta can be
accomplished locally for each individual splitting. Thertes D7, represent final-state splittings with an
initial-state spectator, whil@gi and D’ correspond to a splitting initial-state line accompanigdb
final- and initial-state parton, respectively. The indiéd dipole terms are constructed from the Born
matrix element by inserting colour- and spin-dependentaipes that describe the actual splitting. For
massless final-state emitters and final-state spectatoiisstance, the dipole contributions read
1 ~ T - Ti; -

— Loy if oo by o | =9V, i Ry 167
G m J | i) ikl J Ym (167)

ijk =

TheT,;; andT}, thereby denote the colour charge operators of the emittes@ctator, respectively, they
lead to colour correlations in the full amplitude. TNg; ;. ared-dimensional matrices in the emitter’s
spin space that induce spin correlations.

For the construction of a parton-shower algorithm from tipekg formula Eq. (166) certain approxima-
tions are needed that finally allow for an exponentiatiorhef4plitting operators to derive the Sudakov
form factors central for a shower implementation. In additithe splitting kinematics, choices on scale
settings and the actual shower-ordering parameter hawe fizda.

19.2.1 Shower construction criteria

The full colour correlations present in thé1,,, 1|?> matrix element have to be discarded in the shower
picture, instead the leading terms1iiN, are considered onl§?. In this approximation a colour flow
can be assigned to each parton configuration. Motivated hgiderations on the colour dynamics for
soft emissions, we choose the emitter and spectator to baroobnnected in the shower formalism. The
colour-charge operators simplify to

Ty Ty 1
Tf] A/;s;pec 3

33Although formally subleading, we consider splittings of typeg — ¢q as well

(168)
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with N7 = 1,2 in case the emitter has on8{((3) (anti-)triplet) or two SU (3) octet) possible spec-
tators. The four-dimensional dipole functioWsare used as the shower splitting functions. Furthermore,
we neglect spin correlations by using spin-averaged slitunctions(V) 34,

As shower evolution variable we choose the transverse mamehetween the splitting products for
branching final-state partons and the transverse momenttimmegpect to the beam for emissions from
the initial state, collectively denoted [y, . This scale is also employed as the scale of the running
coupling and the parton distributions, once initial-stzdetons are present.

Based on the above approximations and choices Sudakov fmtor§ corresponding to the different
types of Catani—-Seymour dipoles can be derived, that déterthe probability for a certain branching
not to occur for a given range of the evolution variable. Tow generic cases are briefly reviewed in the
following. For simplicity, here we consider massless pastonly, the massive case is discussed in [329].

19.2.2 Final-state emitter — final-state spectator

Consider the final-state splittin{fj, I}} — {1, 4, k} with the four-momentum constraipt; + p, =
pi +p; +pr = Q and all momenta being on their mass-shell. The branchingpeamharacterised by the
Lorentz invariant variables

DiPj
pipj + pibk + DK

Gi=1—3 = DiDk

=k (169)
T pip + PjPk

Yijk =

The factorised form of the fully differentigln + 1)-parton cross section that exactly reproduces the
corresponding soft and collinear divergences of the redssion process reads

R R dyijr . dop as 1 N
m+1 — U0m : i spec (1 — Yij ij iy Jig : 17
doyn 41 = do %j k;j " dzig -5 N7 (L= 9k ) (Vi (% vij k) (170)

The spin-averaged splitting kerngl¥;; ;) for the branchingg — ¢g, g — gg andg — ¢q read

2
Vg sCGiyin) = Cpd———— —(1+3) %, 171
( ngj,k(zl yw,k)> F { 1= %+ Zyin (1+ ZZ)} ( )
1 1
Voo i (Zi vii = 2CA{ — + = . _2+2i1_£i}7 172
Voo (5. i) L= 2Zi+ Zivijre 2 + Yijk — ZiYijk ( )g - (472)
<tiqj7k(§7;)> = 1 {1 — 2% (1 - 22)} . (173)

In terms of the splitting variables the transverse momertetaeen the splitting producisand; (our
shower evolution variable) can then be written as

K3 = 2pi;pr yiju Zi (1 — %), (174)
and accordingly
dy;; dk?
S L (175)
Yij ke k9

Setting the infrared shower cut-off equal kg , and the upper limit tk? _ the Z; integration is
constrained to

1
O k) = 76)

1 ,max>

34Some of the dipole functions can become negative in nonssnghase-space region, prohibiting a simple probaiailist
interpretation. We choose to set them to zero in these cases.
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The kinematics of the splitting are fixed through

k2
pi = Zipij + —— 223 e prt+ki, (177)
i 4Pij
o (o) e — k (178)
p; = Zi) Pij (1 — gi) Qﬁijﬁk Pk 1
e = (1 —=yijr) Pk, (179)

with &, the spacelike transverse-momentum vector perpendiaufgy &ndp, andk, -k, = —k2. The
Sudakov form factor for having no final-state splitting wétHinal-state spectator betwekn .. and
k7 , reads

2 2
AFF (kL,maX? kL,O)
L ,max

dk2 -
= €xp Z Z spec / /dzl 1 — Yij, k‘)<Vij,kJ(zi7 yij,k’)> : (180)

ij  k#ij

19.2.3 Final-state emitter — initial-state spectator

In the presence of initial-state partons a final-statetsplihay be colour connected to one of the incoming

lines. We consider the splittingj,a} — {1, j,a}, with p;; — po = pi + p; — P = Q. This time the

branching is parameterised by the quantities

PiPa + PjPa — PiPj L 5=1- 2j _ PiPa ' (181)
PiPa + PjPa PiPa + PjPa

The relative transverse momentum of the new emerging fiaéd-partons is given by

Lija =

. 1=mia
ki = 2PaDij B L (1= 2). (182)

ij,a

The derived Sudakov form factor for this splitting type read
AFI(ki,ma)U ki,O)

— exp | — 1 - as(k fa(na/%ﬂm ) al(z g
= p ZZ NPee / /d o Fa(nar K ) <V i(Zi, Tija))

(183)

Here,n, is the momentum fraction of the spectator partcand f, (1., k% ) the corresponding hadronic
PDF evaluated at some scalg = k% . The parton-distribution functioff, (1. /.., k? ) accounts for
the new incoming momentum. Thg integration boundaries are given by Eq. (176) and the comcre
splitting functions( VY (%, z;5,)), can be found in Ref. [329]. The branching kinematics aredfixe

2

pi = Zi Dij + P+ ko, (184)
2 2DijDa
o k?
pi = (1—=2Z)py;+ mpa — kL, (185)
i ijPa

with &, perpendicular to both the emitter and the spectator momeniine new spectator momentum
is given by

Pa = Da - (186)
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19.2.4 Initial-state emitter — final-state spectator

Once a final-state line is colour connected to the initiatestdbesides the situation discussed in
Sec. 19.2.3, the reversed case occurs as well. Namely, itied-state line can split and emit a new

final-state parton while the spectator is in the final statee iomentum-conservation condition for such
a branching{cﬁ, k} — {a,i, k} readsp, — pai = pi + pr — pa = Q . The splitting variables are defined

as

__ PiPa + PkPa — PiDk . DiDa
xik,a - ) u’i - ) (187)
PiPa + PkPa PiPa + PkPa

and the transverse-momentum squared of parteith respect to the beam becomes

1 -2
K3 = 2haifr — % ui(1 — ;). (188)

ik,a

The Sudakov form factor associated with this splitting tygeds

Arr (ki_,maw ki,O)

ki,max 9 T4 ( 2/ )
1 dk ags(ks /4) - ,
= &xp _ZZW / k—f/df"ik,a%J(%k,avui;ki)(Vil(xik,avui» ,
ai  k at kio 1 o

(189)
with z_ = n,; andz = Q%/(Q? + 4k2¢,0) and

F 1—u; 1 fa(nai/xik aak2)
J(Tik,a,uis K] ) = i 190
(@ika, i k1) 1—2u Tiga  fai(Mai K3) (190)
accounting for a possible flavour change of the incomingtiimeugh the backward-evolution step. The
complete list of splitting kernels can again be found in R&29]. The branching kinematics are given

by

1 .
Po = —— Dai, (191)
Tik,a
1 -z o B
pi = (1—u) T B B + u;i pr + ki, (192)
ik,a
1l—2ipa B
Pr = Uj; L pai-i-(l—ui)pk — k. (193)
Tik,a

19.2.5 Initial-state emitter — initial-state spectator

The last case to be considered is the splitting of an ingtiate line that is colour connected to the second
incoming parton. The branching is parametrised through

Tiah = PaPb — PiPa — PiPb B = PiPa ’ (194)
PaPb PaPb

such that the transverse-momentum squared of the new fatalfarton becomes

1 _ . .
k% = 2puipy Ui - Tiab T (195)

i,ab
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The Sudakov form factor of this configuration reads

2 2
AH (kJ_,maw kJ_,O)
k2

1 ,max

T4
1 dk? as(k? /4) - ~ )
= exp —Zz APee / - /dxi,ab%J(-fi’ab,vi;ki)<Va2’b($i7ab)> ,

! k2
ai b#tai W L

ki,o xr_
(196)
with
= - 1—Zia —0; 1 fa(nai/xiabakz)
T(x: b7vi;k2 _ 1,0 i ) €L , 197
( v J_) 1- Ljab — 2Ui Ti.ab fai(ﬁaiv ki) ( )
andz_ = ny andzy = 2paps/(2Dapy + 4ki’0). For the kinematics of the emission process it is

convenient to keep the spectator momentum fixed and to digméw incoming parton with the old
incoming momentum according {8 = 1/2; 4 - Poi- The momentum of the newly emerged final-state
partoni, is given by
1—x; b — 0; . -
pi = ————Pai+Oipy+ kL. (198)
Li.ab

Its transverse momentum has to be balanced by the entird §atibstate particles of then-parton
process (including all non-QCD particles).

19.2.6 The algorithm

Having at hand factorised expressions for all possible giotisprocesses and corresponding Sudakov
form factors a probabilistic shower algorithm of indepemidemissions can be formulated. The start
seed forms & — 2 core event with fixed colour flow and a process dependent ghaiast scalé?

1 max*

1. The scale of the next emission is chosen according to tdekew form factors of all contributing
emitter—spectator pairs. The dipole that yields the higtnaesverse momentum is picked to split.

2. The value of the second splitting variable is chosen aliegito the splitting kernel.

3. The splitting kinematics are determined, the new partislinserted and the colour flow gets
adapted.

4. Start from step 1 as long &3 > ki,o and replacek2Lmax by the transverse momentum of the
last splitting.

This yields a chain of subsequent emissions strictly odieréransverse momenta. There is no formal
subdivision of initial and final state evolution, instealll dgoles are treated on equal footing.

19.3 Comparison with experimental data

The ultimate test of a theoretical model is a direct comparigith experimental measurements. Here
we compare the newly developed and implemented partoneshalgorithm (called CS shower in the
following) with some experimental data on hadron productioe e~ annihilation, and Drell-Yan and
jet production inpp collisions. Therefore the shower simulation has been supghted with the string
fragmentation routines of Pythia-6.2 [355] to account fadionisation.

We begin with some of the most precisely measured quantient-shape observablesdhe™ an-
nihilation at theZ" pole. Fig. 19.3 contains a comparison for the normalisedhsdt (| — 77) and
C-parameter() distributions with LEP1 Delphi data [356]. Both obsenedbbtain large higher-order
corrections for two-jet like events that appeariasT ~ 0 andC = 0. In addition, there is a singularity
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Fig. 35: The event-shape variables 1-Thrist- T") and C-parametgiC) in comparison with Delphi LEP1 data [356].

in the C-parameter also in the regi6h~ 0.75 that requires a resummation of large kinematical loga-
rithms [320,357]. The CS shower yields a good agreementtivitlexperimental data. Only very pencil

like events, that are sensitive to hadronisation corrasti@are overestimated in the Monte Carlo. We
believe that this can be improved through a more detaileidduof the hadronisation model parameters.

In Fig. 19.3 we present the predictions of our model for thede-pair transverse-momentum distri-
bution in Drell-Yan production and for the azimuthal deetation of inclusive dijet events ipp colli-
sions. Both observables are nontrivial only if addition&@radiation is produced and thereby test the
emission pattern of the shower ansatz. We observe a goodragnt with data for both observables in
phase-space regions dominated by rather soft or collimeeséons but the agreement outside this range,
i.e. largepZ or smallAdgijet, is also very satisfactory.

19.4 Conclusions

We have presented a new parton-shower algorithm that ufigsfdatorised versions of the Catani—
Seymour dipole functions to describe multi-parton proaturcprocesses in a probabilistic manner. The
model encodes exact four-momentum conservation on thé déeach individual splitting due to the
notion of splitting emitter—spectator pairs. Subsequemssions are ordered in transverse momenta and
the evolution of initial- and final-state partons is done imngfied way. Comparison with experimental
data yields very encouraging results. In a next step we witilsine this new shower approach with exact
multi-leg tree-level matrix elements. Moreover, this miogleuld facilitate a matching with exact NLO
QCD calculations.
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